首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
氦加热器是预冷组合发动机中重要的换热器之一,其原理是利用燃气燃烧的热量提高氦气做功能力,进而提升整个循环系统运行效率。研究中首先设计了蛇形管式、瓦片式、辐射式三种微细通道氦加热器。其次,基于FLUENT15.0软件对微细通道氦加热器管内外的对流换热系数和流动阻力进行了研究。对比模拟结果和经典关联式的计算结果,确定了适用于微细通道氦加热器管内外换热和流阻的关联式。结果表明:对于管内流动换热,经典关联式预测准确,平均误差小于8%。对于管外流动换热,经典关联式对流阻的预测依然准确,但是对换热系数的预测有较大偏差,最大偏差接近50%。基于数值模拟结果拟合了新的微细通道氦加热器管外对流换热关联式,平均误差小于5%。此外,对比分析发现蛇形管式微细通道氦加热器对流换热系数最大,综合性能最优。  相似文献   

2.
为探究超临界压力下碳氢燃料在水平管内的对流换热规律,文章针对超临界条件下航空煤油RP-3在水平细圆管内的对流换热,分析了热流密度、进口雷诺数及浮升力对对流换热的影响。研究表明:沿流动方向,管内表面传热系数随热流密度的增大先减小后增大;在低进口温度及低进口雷诺数情况下,管内换热均出现先恶化后强化的现象,而随着进口温度和雷诺数的增加,此现象消失;浮升力对换热的影响随热流密度的增加而增加;浮升力对下表面换热的加强使得入口效应的影响在下表面先于上表面结束;受浮升力影响,上下壁最大温差可达50 K;质量流速的增加会抑制浮升力对换热的影响;准则数Grq/Grth可以很好地反映浮升力的变化趋势。以上研究结果可为采用碳氢燃料作冷却介质的各类飞行器主动热防护技术方案提供技术支撑。  相似文献   

3.
预冷组合发动机中微通道换热器的仿真分析   总被引:1,自引:0,他引:1  
建立了预冷组合循环发动机(SABRE)的氢/氦微通道换热器数学模型,进行换热特性的仿真分析。计算结果表明:仿真分析的结果与文献数据误差在10%以内,并通过对换热通道几何尺寸的相似变换,获得了微通道特征几何参数随雷诺数的响应曲线,以及氢/氦微通道换热器在特征工况条件下的特性变化规律。  相似文献   

4.
针对空间核动力航天器涡轮盘表面温度过高和温度梯度较大的情况,提出了一种预旋涡轮盘冷却结构。采用数值模拟的方法对比分析了有无预旋2种冷却结构下的涡轮盘表面换热特性,研究了旋转雷诺数对换热效果的影响。计算结果表明:与无预旋结构相比,预旋结构可以有效地提高氦氙冷却气流与涡轮盘的对流换热系数,降低其表面最高温度和温度梯度,最高温降可达63.1 K。随着旋转雷诺数增大,涡轮盘表面最高温度降低,轮盘表面平均换热系数增大,采用预旋结构的表面平均换热系数比无预旋结构增大13.4%。  相似文献   

5.
张萌  孙冰 《火箭推进》2020,46(1):20-27
人工粗糙度作为一种局部强化换热技术,对提高再生冷却效率有重要意义。为了研究人工粗糙度对矩形冷却通道三维流动与传热特性的影响,以及在弯曲段与二次流的耦合作用,对有人工粗糙度的三维弯曲矩形通道进行了建模,并应用Fluent软件进行了数值仿真计算,采用了能够有效准确地求解受强曲率影响的管道内及近壁区域湍流流动的RNG k-ε湍流模型。结果表明:在冷却通道底面添加人工粗糙度会使底部流动受到干扰进而导致流速中心上移,因此在弯曲段,有人工粗糙度的冷却通道中所产生迪恩涡的范围相对较小且距离底面较远,而随着二次流的产生,流速中心会向底部移动,使得该处的换热得到改善,整体对流传热系数上升;当入口质量流量分别为0.1 kg/s,0.2 kg/s,0.3 kg/s时,有人工粗糙度工况下弯曲段加热面平均对流传热系数分别增加了11.86%,13.11%,16.14%,表明添加人工粗糙度可以显著提高换热,且随着入口质量流量的增加其对换热的提高作用也变得越来越明显。  相似文献   

6.
为了研究预冷空气涡轮火箭发动机(PATR)的最大状态(最大推力和最大比冲状态)控制规律,建立了PATR的稳态变工况模型,研究了控制量对发动机性能参数的影响特性,给出了在总氢流量一定的前提下,发动机的最优性能状态(推力和比冲同时达到最大)控制规律,在此基础上进一步分别得到了发动机的最大推力状态和最大比冲状态的控制规律,并分别给出了发动机处于最大推力状态和最大比冲状态下的飞行包线。结果表明:当总氢流量一定时,PATR发动机的推力和比冲将随主燃室温度、氦涡轮入口温度、尾喷管喉部面积的增加而增大;给定总氢流量下的PATR发动机的最优性能状态控制规律为:核心机余气系数之和等于1、氦涡轮入口温度、尾喷管喉部面积分别取得最大值,此时发动机的推力和比冲同时达到最大,发动机处于最优性能状态;当主燃室温度、氦涡轮入口温度、尾喷管喉部面积一定时,推力随总氢流量的增加而增大,比冲与之相反;PATR发动机的最大推力状态控制规律为核心机余气系数之和等于1、氦涡轮入口温度、尾喷管喉部面积分别取得最大值,并要尽可能地增加总氢流量;PATR发动机的最大比冲状态控制规律为核心机余气系数之和等于1、氦涡轮入口温度、尾喷管喉部面积分别取得最大值,并要尽可能地减小总氢流量。  相似文献   

7.
基于ANSYS数值计算软件,建立了液体火箭发动机涡轮泵用机械密封的二维稳态传热模型,依靠经验公式确定了模型的对流换热系数。计算了密封环的温度场和热载变形,分析了密封端面比压、回流流量以及不同材质对密封温度场的影响规律。结果表明:密封端面最高温度发生在靠近密封环内径处,且密封端面比压越大密封环温度梯度越大;密封环热载变形呈收敛间隙,最大变形发生在动环端面的外径处,其值约为2.2μm;密封环端面最高温度随回流流量增加而减小,当回流流量从0.1~0.6 kg/s变化时,密封环端面最高温度可降低18%(从100℃降至82℃);当回流流量增大到0.3 kg/s时,继续提高对密封环端面温升的控制不再显著;采用高导热系数的摩擦副材料能够显著降低端面温升和温度梯度,提高密封工作可靠性。  相似文献   

8.
为解决传统数值方法对辐射器对流换热系数评估困难、流动散热性能预测精度不高的问题,明晰工况参数与重力对辐射器流动散热特性影响规律,指导辐射器轻量化设计与地面试验,构建辐射器导热-对流-辐射耦合传热等比仿真模型,评估其与经验公式对辐射器水动力及热特性预测可靠性,分析流量、入口温度、吸收外热流及重力对辐射器工作特性影响规律。结果表明:辐射器压降及散热功率模拟值与真空热试验数据最大相对误差为3.45%和2.86%,压降及换热系数经验公式预测值与仿真值最大相对误差为-10.15%和-33.18%;辐射器散热功率随流量与入口温度的增加而增大,吸收外热流增加会降低对流换热热流量,相较零重力,常重力水平状态辐射器散热功率提高2.86%。所建模型可准确预测辐射器工作特性;辐射器设计应在满足压降与出口温度指标要求时,提高流量与入口温度,地面试验辐射器应竖直放置。  相似文献   

9.
对以铜-水和氧化铜-水的纳米流体为工质的小型平板毛细泵回路(CPL)进行了实验,研究了纳米颗粒参数;包括质量浓度、纳米颗粒种类以及纳米颗粒粒径对CPL换热特性的影响.实验中采用了平均粒径为50nm的CuO粒子,20nm和50nm的Cu粒子,流体中纳米颗粒质量浓度为0.1wt%~2.0wt%,工作压力固定在15.74kPa.实验结果表明,纳米流体替代纯水后,蒸发器的换热系数和最大热流密度显著提高,从而提高了CPL的换热性能.质量浓度对换热特性有明显影响,存在着一个对应最大换热强化能力的最佳质量浓度.对于铜纳米颗粒而言,其最佳纳米颗粒质量浓度为1.0wt%,而对于氧化铜纳米颗粒而言,其最佳纳米颗粒质量浓度为0.5wt%.纳米颗粒的种类和平均粒径大小对换热性能强化能力也有很大影响:对于粒径相同的纳米颗粒而言,铜-水纳米流体的CPL换热性能高于氧化铜-水纳米流体的换热性能;对于同种类型的纳米流体而言,小粒径纳米颗粒对CPL换热性能的强化作用大于大粒径纳米颗粒对换热性能的影响.  相似文献   

10.
为了掌握吸气式火箭发动机(SABRE)空气预冷器的流动换热特性,为设计相应类型的预冷器提供技术基础,针对SABRE预冷器最小周期性单元,以数值方法研究了管间距、管排数、空气入射角度及氦气/空气热容量比对预冷器流动换热的影响。研究结果表明:增大管排数和减小管间距,能够增大预冷器换热功率,降低空气出口温度,但会降低空气侧、氦气侧平均换热系数,减弱对流换热能力,增大空气侧总压损失。空气入射角度对空气侧、氦气侧换热影响微小,但对空气侧总压恢复系数影响显著。增大氦气/空气热容量比能够降低空气侧总压损失,增大空气侧、氦气侧平均换热系数,降低空气出口温度。  相似文献   

11.
毕研强  徐向华  梁新刚 《宇航学报》2012,33(11):1706-1710
随着航天器热控制的发展,蒸气压缩热泵排热系统等热控方式逐渐受到人们的重视,其中冷凝换热对热泵的性能好坏有重要的影响。为了研究重力场对冷凝换热的影响,将紫铜直管冷凝器置于蒸气压缩热泵系统中,通过改变重力场与流动方向的夹角,测量得到了不同倾角下的冷凝换热系数和压降。实验结果表明,倾角对直管内冷凝换热系数的影响较大,不同倾角下的换热系数差别达30%,远大于不同倾角对直管内蒸发换热的影响;压缩机润滑油对冷凝换热的影响也很大,相比较无润滑油冷凝换热系数低30%以上。随着质量流量的增加,压缩机润滑油的影响逐渐减弱。
  相似文献   

12.
为验证微细通道内流动沸腾散热技术在空间的适用性,用实验方法研究了平行微细通道内流动沸腾换热的重力无关性。搭建了两相流体回路系统,设计了水力直径0.91mm、倒梯形截面的平行微细通道铜基热沉,通过电火花腐蚀技术在铜基加热器表面刻蚀制作微细通道,两者集成一体。由实验分析了-90°~90°不同重力倾角下微通道内的流动沸腾特性。结果发现:不同流量下不同重力倾角的微细通道的沸腾曲线基本吻合,临界热流值基本一致,表明微通道不仅强化换热能力,而且削弱了重力对沸腾换热的影响。实验结果处于文献中Bo准则和Fr准则的重力无关性区域内,验证了微细通道内流动沸腾换热具一定程度的重力无关特性,地面上测得的微通道内流动沸腾换热系数和临界热流等实验数据能安全有效用于空间环境的热控设计。  相似文献   

13.
印刷电路板换热器作为一种新型的微通道换热器,具有紧凑高效、耐温耐压、可模块化等优势,在火箭发动机中具有很好的应用前景,但目前将印刷电路板换热器应用于火箭发动机的研究很少。对火箭发动机氦加热器提出了印刷电路板换热器的设计思路,开发了热力设计程序,并对其进行了数值模拟。结果表明:印刷电路板式氦加热器芯体具有较小的体积和质量,冷热侧温降的模拟值与计算值最大相对误差为1.33%,冷热侧压降的模拟值与计算值之间的最大相对误差为18.51%,证明了所开发的分段热力设计方法用于印刷电路板式氦加热器具有较高的准确性。氦加热器的冷端换热能力最强,热侧流体流动更加剧烈,换热能力更强,但同时也有更大的压降。  相似文献   

14.
为了给氧气/煤油发动机设计和热防护设计提供必要的设计参数,针对氧气/煤油燃气进行热力学计算。运用吉布斯最小自由焓计算模型得到燃气平衡组成,通过拟合公式的方法得到燃气的热物理参数及输运系数。通过计算,得到氧气/煤油燃气的组分及比焓、密度、比熵、粘性系数等热物理参数和输运系数随温度和压力的变化特性。分析结果表明:水离解对氧气/煤油燃气组分变化存在显著影响,压力增大会导致水离解起始温度升高;氧气/煤油燃气比焓、比熵、定压比热、粘性系数、热传导系数变化在温度较低时受压力影响较小,当水开始离解后,压力的影响显著增强;组分在燃气中的扩散系数同时受到了温度和组分摩尔分数的影响;燃气普朗特数变化受热传导系数变化的影响较大,水离解后,热传导系数的迅速增大使燃气的普朗特数迅速减小。  相似文献   

15.
旋转带来的叶片内部动-热负荷不均衡性会严重影响透平机械的安全与稳定。为研究旋转数和浮力系数对涡轮动叶片内部通道流动传热特性的影响,应用CFD仿真计算方法,分别以光滑和带肋的叶根弯道为对象,在旋转数分别为0、0.15、0.2、0.25、0.3和浮力系数分别为0、0.3、0.4、0.5、0.6的条件下进行模拟。结果表明:随着旋转数增加,科氏力作用增强,在科氏力指向侧的流动传热得以强化;浮力系数增大,旋转浮升力作用增强,会导致内流通道前后缘面出现双峰流,外流通道前缘面出现流动分离甚至产生回流;综合对比光滑通道和带肋通道,带肋通道的换热强度更大,且受到旋转效应的影响比光滑通道小。  相似文献   

16.
抽屉式标准机柜换热性能仿真及设计   总被引:1,自引:0,他引:1  
韩海鹰  姜军 《宇航学报》2009,30(1):332-337
为了分析风道通风孔宽度、抽屉发热量分布、进风流量、进气温度和机柜进出风口布置方式对机柜换热性能的影响,给出抽屉式标准机柜热控制系统的设计步骤,建立了某型抽屉式标准机柜的物理模型,并采用CFD方法对机柜内部通风换热情况进行了数值仿真。结果表明,进出风口布置方式、进风流量及通风孔宽度对机柜换热性能影响很大,抽屉发热量和进气温度与抽屉通风换热性能关系不大。经过研究发现,在标准机柜热控制系统设计过程中,由于气流进出口布置方式受舱内整体布局方案限制,在一定范围内增加进风流量和减小通风孔宽度是改善抽屉对流换热的主要措施。
  相似文献   

17.
流速及进出液口形式对板式热沉换热性能影响   总被引:2,自引:0,他引:2  
热沉的换热性能直接影响空间冷环境的模拟效果。文章通过建立不锈钢板式热沉的几何结构模型,利用流体力学理论和有限元方法对板式热沉换热性能进行数值模拟。湍流计算采用RNG模型的k-ε方程,压力–速度耦合计算采用Simple算法,得到热沉壁面温度分布及换热特性参数,同时分析流速及进出口形式对热沉壁面温度均匀性及换热性能的影响。结果表明:较小的流速会导致热沉壁面温度均匀性变差,而流速的增加可以提高热沉的换热效率,但又会增加流体的压力损失。为保证热沉壁面温度分布均匀,需在综合考虑传热和阻力问题的基础上来确定最优的入口流速。当热沉有效尺寸较小时,则进出口布置形式不会影响板式热沉壁面温度的均匀性。  相似文献   

18.
氦氙气体的组分保持是氦氙布雷顿能量转换系统长期稳定运行的基础,而无论是工质气体的泄漏还是充填量的调节都有可能导致系统中的氦氙气体组分发生变化,进而影响系统运行状态。通过对氦氙布雷顿系统的动态仿真计算,得到了气体组分发生变化时系统运行的差异。当气体组分发生变化时,系统共同工作线将发生偏移,尤其是气体摩尔质量变小时,共同工作线向喘振线偏移;并且在到达满功率输出时,压气机喘振裕度变小,且需要更高的涡轮入口温度;同时会导致回热器热侧温度入口提高,不利于系统的稳定运行。基于系统仿真结果提出了在额定转速下以负荷率、流量为变量的氦氙气体组分计算方法,为实现氦氙布雷顿循环工质组分变化的监控和调节提出了新思路。该方法中,流量的精确测量是提高组分分析精度的重要保障。  相似文献   

19.
闭式布雷顿循环是未来空间大功率热电转换的有效途径,而旁路调节是实现系统快速功率调节和转速控制的有效手段。通过对标美国普罗米修斯计划中的热电转换系统参数,进行了涡轮、压气机的气动设计和换热器性能计算,获得了包括组件特性、管道布局的热电转换系统动态仿真模型。基于该动态模型,对旁通阀不同响应时间、开度对系统功率、转速和循环温度、压力等参数影响进行仿真研究。空间闭式布雷顿循环系统在旁通阀开启后,系统功率和转速快速下降,其中功率出现了超调现象;循环高压侧压力下降且低压侧压力上升;回热器热侧入口温度增加而冷侧入口温度下降,热应力进一步提高。系统容积的提高,在一定程度上可以降低系统对旁通阀调节的敏感性。  相似文献   

20.
气氦热沉是月球超低温环境试进行设计,运用flowmaster软件,根据气氦热沉的结构进行建模仿真.在给定热负荷的条件下,得到热沉内氦气的流量分配和温度分布规律,并对初步设计提出两种优化方案.计算出气氦热沉的翅片最高温度,最后提出气氦热沉结构的设计方法和原则.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号