首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对大推力常规推进剂补燃发动机燃气发生器试验的高压富氧燃气的无毒化排放处理需求,设计了国内首个大流量高压富氧燃气实时燃烧处理装置,实现了某补燃发动机富氧发生器试验燃气的燃烧处理。处理装置采取快速降压和混水补燃的技术方案,首先采用超声速拉法尔喷管和多孔阻尼板,使排气的压力大幅下降,并通过整流装置保证排气流场参数均匀,为下游燃烧室提供低压低速的稳定气流;然后采用分级燃烧室,在燃烧室轴线的不同位置多次喷射混水燃料,实现与富氧排气进行补燃,通过控制混合比和燃烧温度,保证NOx转化为N2和CO2。试验结果表明,处理装置燃烧稳定,结构可靠,排气压降比超过95■,补燃效率超过0.9,实现了无毒化处理能力超过每秒百千克量级。  相似文献   

2.
通过求解使用k-ε湍流模型的Navier-Stokes方程组对采用同轴直流气-气单喷嘴燃烧室的燃烧流场进行数值模拟,对比分析了富氢/富氧燃气推进剂与常温氢气/氧气推进剂条件下的燃烧流场、燃烧室室壁和喷注面板处的燃气温度,研究了富氢/富氧燃气温度变化对燃烧流场和燃烧室热载的影响。数值结果表明:富氢/富氧燃气气-气喷嘴的燃烧性能较好,但热载较高;富氢/富氧燃气温度一定范围内提高对燃烧性能影响不明显,而热载增加。  相似文献   

3.
含硼富燃料推进剂一次燃烧喷射效率影响因素分析   总被引:4,自引:1,他引:3  
通过燃气发生器法测试含硼富燃料推进剂一次燃烧喷射效率,分析推进剂组分和喷射装置对一次燃烧喷射效率的影响。研究认为推进剂组分调整中,有利于提高推进剂燃速和一次燃烧温度的因素,基本上有利于提高一次燃烧喷射效率;当硼含量为30%时,通过调整推进剂配方,选用非壅塞喷射装置,一次燃烧喷射效率可达97%。  相似文献   

4.
为吸收某型号发动机地面试验尾气中所含的肼和氨气,设计了肼推进剂废气处理系统,处理后的气体达到可排入大气的标准。文章介绍了肼分解废气处理的7种常用方法,经比较选择使用处理液喷淋的方法。废气处理系统实际达到的技术参数为:对空自运行流量944 Nm~3/h;发动机试车状态下经过处理的废气中肼含量0.001 2 mg/m~3,氨含量为0.032 6~0.057 mg/m~3(厂界值,共检测4点)。检测结果大大优于国家相关标准要求。经过数十次发动机地面试验的实践证明,系统能够满足用户使用要求,并且操作简便、运行可靠、免于维护。  相似文献   

5.
为研究环形燃烧室中自燃推进剂旋转爆震波的传播特性,以一甲基肼和四氧化二氮为推进剂,在圆环形燃烧室中组织旋转爆震燃烧。燃烧室外径和内径分别为60 mm和30 mm,采用了24对撞击式喷嘴,四氧化二氮的喷孔直径为0.4 mm,一甲基肼的喷孔直径为0.3 mm,通过高频脉动压力传感器记录了旋转爆震波的传播过程。研究结果表明:自燃推进剂的旋转爆震燃烧过程具有高度非稳态特性,不仅各个旋转周期之间存在明显差异,而且同一个传播周期内旋转爆震波的强度也是动态变化的;对于自燃推进剂的旋转爆震燃烧的产生及维持过程来说,外界激励不起决定性作用,燃烧室几何构型、流量和混合比对旋转爆震燃烧的影响更大。  相似文献   

6.
Kubot.  N  戴仙雅 《上海航天》1989,(2):31-35
为了解高能叠氮聚合物的燃烧速率机理,对GAP(聚叠氮缩水甘油醚)推进剂的燃烧和分解过程作了研究.GAP推进剂的特点是在分子结构中附有-N_3官能团,燃烧试验结果表明:即使单位质量GAP推进剂所含的能量相对较低,GAP推进剂的燃速也较高;而且其燃速很大程度上依赖于初始温度和GAP推进剂中的混合浓度.AGP推进剂的燃速随着单位质量的GAP推进剂中-N_3官能团浓度的增加而增加.从GAP燃烧火焰结构的热分布试验和热化学试验中可发现,燃烧表面放出的热量比由热气流反馈到燃烧表面的热量大得多,GAP的初始分解是由-GH_2-N=N_2分子结构中键断裂生成-C≡N N_2引起的.该分解反应具有高达685kJ/mol的放出热,由此可得,所观察到的高燃速是由燃烧表面的热分解反应引起的.  相似文献   

7.
固体推进剂空气涡轮火箭发动机的非设计点性能研究   总被引:6,自引:0,他引:6  
为了简化控制系统和节流装置,采用涡轮进口富燃燃气流量为常数的调节计划,建立了固体推进剂空气涡轮火箭发动机(SPATR)的非设计点计算数学模型。分析了不同设计点涡轮进口富燃燃气流量对SPATR性能的影响,确立了设计点富燃燃气流量选择的方法。计算了SPATR的非设计点性能。结果表明,所建数学模型合理、可行,能满足SPATR在不同高度和速度下飞行任务的需要。  相似文献   

8.
韩长霖  田原 《火箭推进》2020,46(1):28-34
为了研究冷却剂的流动方向和推进剂的质量流量对推力室燃烧和传热过程带来的影响,以某型氢氧火箭发动机的推力室缩比试验件为研究对象,对推力室的燃烧和传热过程进行了数值仿真。改变冷却剂的流动方向,最高壁面温度相差1.04%,最高壁面热流密度相差0.544%,冷却剂温升相差0.233%,出口压力相差3.803%,分析发现,改变冷却剂的流动方向,对推力室内部的燃烧过程和壁面传热效率影响很小,冷却剂的流动方向会影响壁面温度分布。推进剂质量流量提升22.29%,室压提升22.17%,燃烧效率降低0.55%,最高壁温提升9.16%,最高热流密度提升17.48%,冷却剂温升提高13.05%,分析发现,提升推进剂质量流量会导致推力室壁面温度和冷却剂温升的提高,由于缩比发动机反应空间小燃烧不够充分,提升推进剂质量流量会使燃烧效率有所下降。  相似文献   

9.
凝胶推进剂是一种非牛顿粘弹性流体,具有粘度高、压力触变性等特点,在发动机实际试车中采用了科氏力质量流量计对凝胶推进剂在实际管路中的流量进行测量。西安航天计量测试研究所结合凝胶推进剂本身的压力触变特性,对凝胶流量计的校准进行了深入地研究。基于主动式活塞液体流量标准装置的结构,通过增设加压/泄压装置,加装在线密度计,设计了一套针对火箭发动机凝胶流量计的标准装置。该装置可以充分模拟凝胶流量计的实际使用工况,实现凝胶流量计的实流模拟校准,进而提高了瞬态流量的测量准确度。本套凝胶流量标准装置具有流量稳定、重复性好及测量范围大等特点,其质量流量测量范围为19.44~3 611 g/s,完全满足我国航天发动机在实际热试车和高空模拟试车中对凝胶推进剂质量流量测量的要求。  相似文献   

10.
本文的研究还不十分成熟。文中介绍了不同状态(液态和气态)两种燃料与一种氧化剂在雾化、燃烧时的混气形成过程方面的一些研究结果,介绍了用作液氧/煤油/液氢火箭发动机(在煤油供应平缓减少直至完全关闭情况下,富氧燃气或富燃燃气在燃烧室中补燃)混合装置的三组元喷嘴的研制开发情况。三组元喷嘴综合了俄罗斯液体火箭发动机(LRE)中广泛使用的两种喷嘴型式:一种是燃料从周边喷注到中心气流中的气液喷嘴,另一种是中心为液喷嘴的气液同轴喷嘴。它们可以各自单独工作和同时工作。由于离心式喷嘴节流强化了非稳态过程中推进剂组元的雾化和混合,使得在节流过程中液体燃料流量可大范围变化;由于阻尼了离心式喷嘴中节流燃料流量的波动,提高了燃烧稳定性。  相似文献   

11.
介绍了一种新型高性能HAN基单组元推进剂及其在5 N发动机中的催化分解性能。通过点滴试验和热力学计算考察了新型推进剂的催化分解活性和理论燃烧温度,通过5 N发动机的120℃启动、10 s和20 s稳态程序、1 200 s长稳态程序和脉冲程序考察新型推进剂的启动性能、催化分解活性、长稳态工作稳定性以及脉冲工作稳定性,评价了推进剂配方对催化剂的损伤程度。结果表明,新型HAN基单组元推进剂具有较高的催化分解活性和适宜的理论燃烧温度,能够在5 N发动机中于120℃预热温度下顺利启动,完成系列稳态和脉冲考核程序,累计工作时间大于2 000 s,燃烧室最高温度不超过1 150℃。试后催化床未出现空腔,催化剂颗粒完整,质量损失率小于5%。试验证明了新型HAN基推进剂具有良好的催化分解燃烧性能和与催化剂的匹配性能。  相似文献   

12.
介绍了一种测量推进剂火焰温度的新方法,即三基色测量法(PCM)。采用三基色测量法测试了S-GAP推进剂(以HMX为氧化剂)的燃烧火焰温度。结果表明,随着的压强增加,S-GAP火焰区更接近燃烧表面;随着推进剂中HMX的增加,暗区变薄。S-GAP推进剂的火焰温度分布呈等温线形式,1 MPa下火焰温度范围为970~1 600℃,当压强增大为3MPa时,火焰温度范围为1 200~2 200℃。PCM法与热电偶方法测量的最高燃烧火焰温度值较为接近。  相似文献   

13.
为了研究液体火箭发动机试验富燃燃气安全处理方法,确保发动机试验过程的安全,通过对未来大推力氢氧发动机高模试验关键参数设计,确定富氢燃气补氧燃烧方案,并在此基础上建立大推力氢氧发动机高模试验富氢燃气补氧燃烧仿真模型,对补氧燃烧过程进行仿真研究,研究补氧流量和液氧喷注角度对燃烧过程及高模系统的影响,以验证补氧燃烧方案的可行性。仿真结果表明补氧补燃方案可以安全处理发动机燃气中的富氢,保证高模试验安全。并且补氧量越大,燃烧长度越小,热防护难度增加;补氧喷注角度增加对氢燃尽长度影响不大,但使设备热防护难度增大。  相似文献   

14.
使用剧毒推进剂,如N_2O_4/肼类,将会变得越来越困难。一方面,一些环保法规和出于安全方面的考虑使得这些推进剂的价格大大提高;另一方面,这些推进剂在未来的推进系统中的使用也被严格限制。因此,必须使用低毒推进剂来替代以前的剧毒推进剂。比如,采用火箭用过氧化氢(RGHP)和燃料组成的双组元推进剂(以及相应的催化剂)。本文介绍了过氧化氢和甲醇组成的双组元推进剂(采用金属锰作为催化剂)的一些初步的研究工作,包括理论性能估算,点火试验,发动机发展过程,喷注器设计,以及样机试验。  相似文献   

15.
洛克达因公司已成功地设计和生产出了富氧的液氧/气氢预燃室,并在燃烧室绝压为14.1~21.3MPa,质量混合比为117—174,推进剂总流量为14.0~23.6kg/s 的工作范围内通过了热试车考验。按费用低、重量轻、易操作等原则设计的先进的富氧预燃室,其推进剂射流都处在同一个平面上(喷注面),以实现沿不冷却的燃烧室轴线方向的均匀燃烧。在八次主级工作时间为1~5秒的试车中,直径89mm 的富氧预燃室喷注器多次反复地验证了其良好的点火、火焰传播和火焰维持等特性,而且当通过测量计算所得的特征速度效率为99%时,没有不稳定燃烧的迹象出现。此时测得的燃气平均温度从260℃(混合比 I_m—174)到538℃(r_m—117),而且每次试验,各方向热电偶的测量值相差不大于24℃。全尺寸的富氧 LOX/GH_2预燃室的成功热试车证明了全流量补燃循环(Full-Flow Staged Combustion Cycle 简称 FFSC 循环)发动机设计的一个关键启动技术已被突破。本报告总结了富氧预燃室的研究情况并进而对确保可靠地实现点火、火焰传播和火焰维持,使预燃室形成高水平的推进剂混合和质流的均匀性的喷注器进行了设计分析。  相似文献   

16.
商业及科研应用的小型卫星需要费用低的推进子系统。一般而言,这类推进系统仅用于通过反作用飞轮来完成轨道嵌入、轨道控制及姿态控制的飞行任务。这就允许贮箱采用简化的推进剂管理装置(PMD)。本文介绍这种推进剂管理装置的设计及研制方法。推进剂贮箱应该是具有较低费用的装置。它是利用叶片作为推进剂管理装置的全焊接钛结构,贮存30kg 肼(N_2H_4)。这种推进剂管理装置没有活动件,毛细功能组件较少,因此,它能够确保贮箱重量轻,结构简单和费用较低。在低重力和推力室连续工作产生的低加速度条件下,这种叶片式表面张力贮箱能够提供所需要的不含气泡的推进剂。研制工作主要集中在叶片式管理装置,它的关键之处是性能及动态特性。由于重力作用,这种管理装置的主要困难是不能在地面进行试验。因此,必须通过模型及低重力试验来验证。建立稳态及瞬态模型,有助于模拟贮箱在不同流量及推力室工作产生的加速度、瞬态过程时的排液情况。依据相似准则,用中性浮力试验来模拟低重力环境。这种试验最大的好处是没有时间限制,所以能够完成一个完整的排液过程。模拟件设计要考虑模拟液与模拟件的接触角代表了氮/肼/钛的接触角。所有的分析及试验圆满完成,证明这种推进剂营理装置具有满意的性能。  相似文献   

17.
镁铝富燃料推进剂燃烧残渣影响因素理论分析   总被引:2,自引:0,他引:2  
用最小自由能法计算了镁铝富燃料推进剂一次燃烧室产物的成分,分析了凝聚相C、Mg和A l产物含量的变化对燃烧残渣的影响;主要探讨了AP含量、Mg/A l比例、HTPB粘合剂含量、燃烧室压强对凝聚相C、Mg、A l燃烧产物含量的影响。计算结果表明,增加AP含量、设计Mg/A l比小于3/5、减小HTPB粘合剂含量、降低燃烧室压强均能减少凝聚相产物含量,有利于降低燃烧残渣。燃气发生器实验结果表明,Mg/A l比例对燃烧残渣影响的实验数据与理论分析一致。  相似文献   

18.
燃烧条件下自燃推进剂的雾场及火焰实验研究   总被引:2,自引:0,他引:2  
为研究双组元自燃推进剂喷雾燃烧的特点,在单互击式喷嘴矩形燃烧室内开展了一甲基肼/四氧化二氮(MMH/NTO)推进剂喷雾燃烧过程可视化实验,采用高速相机直接拍摄并获得了MMH/NTO的火焰自然发光图像,采用高速相机及光源后置消光法拍摄并获得了燃烧条件下MMH/NTO撞击后的雾场图像。通过实验得到了以下结论:燃烧条件下,MMH/NTO液相主要集中在喷注面附近的喷射雾化区,其面积随燃料射流速度增大而增大;MMH/NTO着火点距离喷注面距离及着火过程的火焰传播速度随推进剂喷射速度增加而增大;按自然发光亮度划分,MMH/NTO火焰分为外层火焰、内层火焰及焰心,焰心亮度最高,其面积随燃料喷射速度增加先减小后增大;MMH/NTO反应长度及火焰张角随燃料喷射速度增加而增大,与喷射雾化区随燃料喷射速度的变化趋势一致。  相似文献   

19.
林森  周进  刘昌国 《上海航天》2007,24(6):39-43
在考虑N2O4/一甲基肼(MMH)自燃推进剂雾化、蒸发和化学反应过程的条件下,采用贴体网格系统和耦合显式求解算法,仿真计算了小推力液体发动机不同喷嘴设计对推进剂的蒸发、混合燃烧、推力室内流场和燃烧室效率的影响。仿真结果与高空热试车数据基本一致。所用模型合理,具一定的参考价值。  相似文献   

20.
液体推进剂偏二甲肼(以下简称 UDMH)已成熟地应用在导弹武器和航天运载火箭上,其生产过程产生 N一二甲基亚硝胺(以下简称 DMNA),其使用过程在大气和水体中产生 DMNA,火箭发动机燃气中存在 DMNA。DMNA 是世界卫生组织(IARC)公认的致癌物质。研究 UDMH 和 DMNA 的转化过程及其在大气、水体中 DMNA 的去除办法,对环境保护及航天高科技的发展具有特殊的意义。本文作者积多年推进剂分析、使用、环境监测及废水、废气治理的经验和研究结果以相关的资料和翔实的实验数据为依据就上述有关问题展开学术研究和讨论。对推动UDMH 的科学使用和 DMNA 的污染治理不乏有抛砖引玉的作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号