首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
空气预冷发动机及微小通道流动传热研究综述   总被引:1,自引:0,他引:1  
汪元  王振国 《宇航学报》2016,37(1):11-20
首先针对发动机空气预冷系统的特点,将现有的预冷机制分为四种类型,包括燃料预冷、质量喷注预压缩冷却、燃料预冷和质量喷注预压缩冷却组合预冷以及其他流体预冷,并分别介绍了每种预冷机制的代表性发动机循环以及技术特点。调研发现,微小通道结构的预冷器具有很高的散热能力和紧凑度,优势显著。英国Skylon空天飞机的预冷却组合循环发动机(SABRE)其微通道结构预冷器具有极高换热能力。对SABRE的预冷器及相关研究进行详细分析,强调微小通道强化换热对提高发动机性能的重要作用。通过对微小通道中单相气态流动换热研究的调研发现,微尺度流动传热机理仍存在诸多分歧,理论发展不完善,需要深入开展微小通道强化传热研究,尤其对于高速高内外温差条件下微小尺度复杂结构空间内流动传热机理需要深入探索。  相似文献   

2.
基于水与金属燃料反应的水冲压发动机是一种新型的水下动力装置。进水管路是金属/水反应冲压发动机的一个重要部件。为了研究进水管路的工作特性,在理论分析和一维设计的基础上,设计出某一工作状态下的进水管路结构参数,并进行了数值模拟。结果表明,管路中出现汽蚀现象;随着出口压强的增大,总压损失减小,流量系数减小;随着来流速度的增大,总压损失增大,流量系数先增大后减小;随着工作深度的增加,总压损失增大,流量系数增大。  相似文献   

3.
微喷管内流体对壁面的粘性力和热传导可显著影响火箭发动机性能.通过出口亚声速层面积与出口面积比、推力和比冲损失等参数,评估了S-A和低Re数k-ε湍流模型、壁面初始温度和喷管构型因素对微喷管内粘性和热损失效应的影响.结果表明,两种湍流模型在计算粘性边界层上有一定的差异,粘性力造成推力损失22%;换热既减小粘性边界层尺寸,降低粘性作用,也降低微喷管比冲;升高微喷管壁面初始温度,能降低热量损失,增大其尺寸能减小粘性损失,二者均能提高比冲.  相似文献   

4.
MEMS-SPMT喷管内的粘性和热损失研究   总被引:2,自引:0,他引:2  
微喷管内流体对壁面的粘性力和热传导可显著影响火箭发动机性能。通过出口亚声速层面积与出口面积比、推力和比冲损失等参数,评估了S-A和低Re数k-ε湍流模型、壁面初始温度和喷管构型因素对微喷管内粘性和热损失效应的影响。结果表明,两种湍流模型在计算粘性边界层上有一定的差异,粘性力造成推力损失22%;换热既减小粘性边界层尺寸,降低粘性作用,也降低微喷管比冲;升高微喷管壁面初始温度,能降低热量损失,增大其尺寸能减小粘性损失,二者均能提高比冲。  相似文献   

5.
复合预冷吸气式火箭发动机热力循环分析   总被引:1,自引:0,他引:1  
采用热力学第一定律分析法分析了复合预冷吸气式火箭发动机(SABRE)的基本热力过程,得出了吸气模式和火箭模式下的理想循环功和热效率表达式,确定了影响发动机理想热力循环性能的特征参数。结果表明:吸气模式下SABRE核心机采用布雷顿循环,压气机的增压比和循环增温比是影响理想热力循环性能的关键参数;火箭模式下SABRE采用火箭发动机循环,喷管降压比和出口排气速度是影响理想热力循环性能的关键参数。氦气仅仅在发动机内通过换热器换热实现能量在各循环子系统之间的输运,而其本身并无变化,不对发动机的理想循环功和热效率产生影响。  相似文献   

6.
考虑壳体与空气自然对流换热的影响,对固体发动机结构进行了热力耦合有限元分析。研究了对流换热对发动机结构响应的影响,讨论了不同对流换热系数下的温度及应变响应变化规律,评估了某双伞盘固体发动机经历固化降温、低温试验及低温贮存过程的结构完整性。结果表明,考虑对流换热能更准确地反映发动机的受载状态;对流换热系数变化影响其结构响应历程,但随对流换热系数的不断增大,这种影响逐渐减弱。  相似文献   

7.
针对空间核动力航天器涡轮盘表面温度过高和温度梯度较大的情况,提出了一种预旋涡轮盘冷却结构。采用数值模拟的方法对比分析了有无预旋2种冷却结构下的涡轮盘表面换热特性,研究了旋转雷诺数对换热效果的影响。计算结果表明:与无预旋结构相比,预旋结构可以有效地提高氦氙冷却气流与涡轮盘的对流换热系数,降低其表面最高温度和温度梯度,最高温降可达63.1 K。随着旋转雷诺数增大,涡轮盘表面最高温度降低,轮盘表面平均换热系数增大,采用预旋结构的表面平均换热系数比无预旋结构增大13.4%。  相似文献   

8.
针对航天器推进系统,分析了氦气在气路上的工作过程,研究了氦气节流效应及其对减压阀阀体温度的影响。研究结果表明,在航天器气路正常工作的温度与压力范围内,氦气经过减压阀节流后的温升在65~68 K之间,并随减压阀进、出口压力差的增大而增大。氦气温度变化引起减压阀阀体温度的变化,因此了解阀体温度特性是减压阀热控设计的依据。  相似文献   

9.
氦加热器是预冷组合发动机中重要的换热器之一,其原理是利用燃气燃烧的热量提高氦气做功能力,进而提升整个循环系统运行效率。研究中首先设计了蛇形管式、瓦片式、辐射式三种微细通道氦加热器。其次,基于FLUENT15.0软件对微细通道氦加热器管内外的对流换热系数和流动阻力进行了研究。对比模拟结果和经典关联式的计算结果,确定了适用于微细通道氦加热器管内外换热和流阻的关联式。结果表明:对于管内流动换热,经典关联式预测准确,平均误差小于8%。对于管外流动换热,经典关联式对流阻的预测依然准确,但是对换热系数的预测有较大偏差,最大偏差接近50%。基于数值模拟结果拟合了新的微细通道氦加热器管外对流换热关联式,平均误差小于5%。此外,对比分析发现蛇形管式微细通道氦加热器对流换热系数最大,综合性能最优。  相似文献   

10.
将层板冷却结构用于叶片尾缘叶盆侧,通过数值模拟改变冲击孔和扰流柱的排布,唇板厚度以及缝宽,研究其对劈缝气膜冷却的影响。结果表明,冲击孔和扰流柱位置的改变,对外部劈缝下游气膜冷却基本无影响;唇板厚度的改变对冷却效率和换热系数分布均有一定影响,唇板厚度减小,劈缝下游冷却效率降低,换热系数增大,相对于原始结构,唇板的改变使得劈缝下游气膜展向平均冷却效率提高65.0%;缝宽的改变对冷却效率和换热系数分布均有较大影响,缝宽越大,冷却效率越高,劈缝下游换热系数减小,劈缝间下游换热系数增大,相对于其他几种结构,缝宽增加劈缝下游的冷却效果最好,展向平均冷却效率最多提高116.5%。  相似文献   

11.
研究了一种二维超声速进气道扩张段型面的中心线变化规律、扩张比及中心线偏距对设计状态下进气道的气动性能及流场的影响。结果表明:采用前缓后急中心线变化规律的进气道出口总压恢复系数最高,而采用前急后缓中心线变化规律的进气道总压恢复系数最低;随着扩张比从1.40增大到1.80,进气道总压恢复系数和抗反压能力均下降,出口马赫数上升,扩张比与长度对进气道出口参数的影响存在较强的耦合关系;随着偏距比的增加,进气道总压恢复系数起初有一定的升高,但偏距比增大到0.80之后,总压恢复系数降低,出口马赫数增大,总体上偏距比变化对进气道抗反压能力影响不大。  相似文献   

12.
为解决传统数值方法对辐射器对流换热系数评估困难、流动散热性能预测精度不高的问题,明晰工况参数与重力对辐射器流动散热特性影响规律,指导辐射器轻量化设计与地面试验,构建辐射器导热-对流-辐射耦合传热等比仿真模型,评估其与经验公式对辐射器水动力及热特性预测可靠性,分析流量、入口温度、吸收外热流及重力对辐射器工作特性影响规律。结果表明:辐射器压降及散热功率模拟值与真空热试验数据最大相对误差为3.45%和2.86%,压降及换热系数经验公式预测值与仿真值最大相对误差为-10.15%和-33.18%;辐射器散热功率随流量与入口温度的增加而增大,吸收外热流增加会降低对流换热热流量,相较零重力,常重力水平状态辐射器散热功率提高2.86%。所建模型可准确预测辐射器工作特性;辐射器设计应在满足压降与出口温度指标要求时,提高流量与入口温度,地面试验辐射器应竖直放置。  相似文献   

13.
航天用纳米流体流动与传热特性的实验研究   总被引:8,自引:0,他引:8  
李强  宣益民  姜军  徐济万 《宇航学报》2005,26(4):391-394,414
研究航天用纳米流体流动与传热特性。测量了不同粒子体积份额的航天用纳米流体雷诺数500~4000范围内的管内对流换热系数和摩擦阻力系数,详细讨论了雷诺数和纳米粒子体积份额对纳米流体对流换热系数和摩擦阻力系数的影响,分析了航天用纳米流体的强化传热性能。实验结果表明,在液体中添加纳米粒子增大了液体的管内对流换热系数,增加了液体的传热效果,粒子的体积份额是影响纳米流体对流换热系数的因素之一,在相同雷诺数条件下,纳米流体的对流换热系数随粒子体积份额的增加而增大。与原液体工质相比,航天用纳米流体的流动阻力系数稍有增大,纳米流体的流动阻力系数不随纳米粒子的体积份额而变化。与航天用纳米流体对流换热系数的增加相比,纳米流体流动阻力系数增大的程度极小,验证了纳米流体强化传热技术应用于航天器热控系统的可行性。  相似文献   

14.
为研究连续旋转爆轰发动机(CRDE)内外流场的变化特性,采用氢气-空气单步有限速率化学反应模型,对内径为40 mm、外径为60 mm、长度为50 mm的连续旋转爆轰发动机进行三维数值模拟,获得了CRDE内外流场结构特征和旋转爆轰波相关参数的变化特性,分析了不同进气总压条件对流场结构和发动机性能的影响。结果表明:爆轰产物在燃烧室出口附近膨胀加速,压力和温度大幅降低,在流场下游产生激波使压力回升,且随进气总压的升高,激波距燃烧室出口距离增加;出口附近羽流中心形成低压高温区域,中心平面上的平均压力低于环境压力,给发动机推力带来了副作用;羽流外围的空气受出口处斜激波的扰动,压力呈现出周期性变化;发动机推力随进气总压的升高而呈线性增加,进气总压为0.55MPa时,发动机推力达到了1160 N。计算仿真结果对掌握连续旋转爆轰发动机外流场特性具有一定的参考价值。  相似文献   

15.
采用一维无粘理论对扩张喷管的流动和性能进行了计算,研究了壁面散热量和散热规律对喷管流动、出口气流参数和性能参数的影响。结果表明:壁面散热会导致喷管沿程静压、静温和总温减小、出口马赫数和总压增大,并且随散热量增大,喷管的工作状态可依次经历欠膨胀状态、临界状态和过膨胀状态,但是喷管的推力系数逐渐减小,性能下降;壁面散热规律对喷管性能有很大影响,入口附近散热量较大出口附近散热量较小时,喷管的性能下降最大。从研究结果可以看出,壁面散热可以调节喷管的欠膨胀度,使喷管从欠膨胀状态趋于过膨胀状态,采用侧重于后半部分散热的规律可以取得良好的调节效果。  相似文献   

16.
基于高超声速预冷发动机闭式氦布雷顿循环中印刷电路板换热器(PCHE)的应用,对PCHE氢氦通道的热固耦合特性进行了数值研究,着重阐述了热侧氦参数对换热的影响机制。探究了热侧壁温和换热系数的变化特征及其对冷侧换热的影响。考察了通道截面温度和湍动能的分布情况。通过熵产和综合换热系数评价了PCHE通道的性能,进行了通道热应力分析,建立了热侧和冷侧换热关联式(误差在±15以内)。结果表明:热侧压力对换热仅有微弱影响;热侧流量提高对热侧和冷侧换热均有增强作用。热侧进口温度下降导致热侧和冷侧换热减弱;热侧进口温度提高造成通道熵产显著增加,热侧流量增加造成通道熵产显著减小;高热应力出现在冷热流道之间和壁面两侧,局部最大热应力达到25 MPa。  相似文献   

17.
介绍了PATR发动机的发展历程,总结了其创新优化思路。针对PATR热力循环方案进行了设计点输入参数影响分析,开展了弹道特性、高度特性和转速特性仿真计算,结果表明:热容比对于发动机性能影响最为显著,热容比k HX 2每增加1,比冲降低0.59,单位推力增加0.39;空气压气机和氦涡轮等熵效率、预冷器空气侧总压恢复系数对发动机性能也有明显影响,空气压气机等熵效率每增加1比冲增加0.12,单位推力增加0.12,其余参数对发动机性能影响相对较小;随着飞行马赫数增加,PATR发动机比冲呈下降趋势,单位推力在外涵开始工作时会产生跳跃式下降,之后基本保持不变;飞行高度增加会使发动机比冲增高,单位推力降低;转速降低会使发动机比冲和单位推力降低,并且内涵和外涵流路共同工作时的降幅明显小于内涵流路单独工作时的降幅。  相似文献   

18.
《航天器工程》2016,(3):57-62
应用一维稳态导热模型,结合具有滑移效应的达西定律、气体通过小孔的流动模型,针对一套水升华器提出了稳态理论分析方法。分析了接触换热系数、排气通道面积两个关键结构参数对水升华器散热性能的影响,并开展了相关实验研究。仿真分析和实验结果表明:稳态散热量随流体回路冷板与给水腔之间接触换热系数增大而增大,接触换热系数较小时,散热量和接触换热系数呈强耦合关系,在接触换热系数较大时,二者呈弱耦合关系。分析表明:散热量随排气通道面积增大而增大,且存在临界排气孔面积,排气孔面积小于临界值时,散热量随排气孔面积的增大而急剧升高,排气孔面积大于临界值时,散热量随排气孔面积的增大而几乎不变。文章研究结果可为空间水升华器的设计提供参考。  相似文献   

19.
隔离段内激波串的产生和发展以及激波/附面层相互干扰现象是极为复杂的,有效地进行激波串的组织是研究隔离段的关键所在,而其性能的好坏直接影响着超燃冲压发动机的性能。采用数值模拟的方法对不同来流附面层厚度工况的二维轴对称隔离段内流场流动特性进行了数值计算,分析了附面层/激波相互作用机理和附面层对隔离段激波串及隔离段性能的影响。结构表明:压缩-膨胀-再压缩-再膨胀……的气流流动挤压过程导致激波串的形成,逆压梯度的存在构成了附面层分离;附面层厚度的增加影响着激波串起始位置和结构;随着附面层厚度的增加,出口总压恢复系数和质量平均马赫数降低,且随着反压增大,变化趋势趋于明显。  相似文献   

20.
热沉结构设计中关键因素的仿真研究   总被引:2,自引:1,他引:1  
文章以某环境模拟试验舱的热沉结构为原型,运用数值模拟软件FLOWMASTER对热沉结构进行仿真计算,研究了单片热沉中支管群的流量和温度分配规律,计算流体在热沉片内流动产生的压力损失,分析讨论了汇总管、支管、支管间距、热负荷等几个因素对热沉结构设计的影响规律,最后提出设计热沉结构时的原则和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号