首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小高径比扰流柱冷却通道的换热和流动特性   总被引:1,自引:1,他引:0  
采用数值模拟的方法,对涡轮叶片尾缘处圆形小高径比扰流柱冷却通道的换热和流动特性进行了研究,分析进口雷诺数和扰流柱间距对冷却通道换热和流动特性的作用过程.结果表明:进口雷诺数的提高能够有效改善冷却通道端壁的换热性能,但这种改善能力随着进口雷诺数的提高而逐渐减弱,同时降低冷却通道的压力损失系数.在两种扰流柱间距中,流向间距是影响端壁换热性能的主要因素,随着流向间距的减小,冷却通道换热性能逐渐变好,压力损失系数降低;横向间距是影响冷却通道流动损失的主要因素,两者大小成反比关系.在通道计算中,扰流柱平均换热性能约是端壁平均换热性能的1.8倍,端壁换热权重约是换热面积比0.824倍,同时该权重几乎不受进口雷诺数的影响.   相似文献   

2.
Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0,0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.  相似文献   

3.
带气膜孔出流和侧向出流的冲击换热实验   总被引:2,自引:1,他引:1  
采用热色液晶瞬态测量技术测量了阵列孔冲击靶面的局部传热系数,获得了冲击雷诺数为5000,10000,15000,20000时侧向出流比(侧向出流质量流量与主流质量流量之比)为0,0.25,0.4,0.6,0.8,1时的靶面传热系数分布规律.结果表明:靶面的传热系数均随雷诺数的升高而升高;靶面上冲击驻点区域传热系数最大,气膜孔区域传热系数较高.靶面的平均传热系数随侧向出流比的增加而减小,侧向出流比较小时,靶面的平均传热系数下降幅度不大,较大时靶面的平均传热系数下降相对较明显.   相似文献   

4.
杨珂  闻洁  徐国强 《航空动力学报》2016,31(11):2567-2574
应用k-ω SST(shear stress transport)湍流模型,计算分析旋转U型通道在不同进口雷诺数(10000~60000)和高旋转数(0~2.013)范围内的流动与换热特性.结果表明:在静止和旋转状态下,进口雷诺数越大,努塞尔数越大.相比于同一工况下的静止状态,旋转显著增强了径向外流直通道的换热强度,径向内流直通道换热强度增大不明显.旋转数对U型通道换热的影响主要通过改变哥氏力和浮升力的大小.受哥氏力的影响,径向外流直通道后缘面换热增强,前缘面换热减弱.浮升力诱发了近壁面的流动分离,使得径向外流直通道前缘面不同位置处的换热强度随旋转数的增加而先减小后增大,计算得到的临界旋转数变化规律与实验测量结果保持一致,即无量纲距离参数与临界旋转数的乘积为定值.   相似文献   

5.
旋转条件下带出流孔的受限空间内冲击换热   总被引:8,自引:5,他引:3       下载免费PDF全文
徐磊  常海萍  潘金栋 《推进技术》2008,29(2):149-152
以旋转涡轮叶片内部冷却为背景,在旋转条件下对带出流孔的受限空间内冲击换热特性进行了实验研究。在冲击与旋转方向、相反两种情况下,通过改变冲击雷诺数Rej(5 000~10 000)、旋转数Ro(0~0.003 4)、无因次温比(Tw-Tf)/Tw(0.056~0.134)对冲击靶面的平均换热特性进行了研究。研究发现,靶面的换热随冲击雷诺数的增加而变好;旋转对冲击换热的削弱在雷诺数较大时表现更明显;实验参数范围内浮升力对换热的影响较小;离心力、哥氏力等对换热的影响程度与内部空气的流动结构及出流方式有关。  相似文献   

6.
为了探究带有凹槽造型的涡轮叶片前缘结构的换热特性,采用瞬态热色液晶技术研究了凹槽对涡轮叶片前缘外表面换热系数的影响,获得了不同主流雷诺数以及湍流度下涡轮叶片原始前缘结构及带两种不同深度凹槽的前缘结构外表面的换热系数分布数据,并采用努塞尔数评估对比了三种结构下的换热特性。实验结果表明:原始前缘结构存在高换热系数区,随着湍流度的增大,高换热核心区显著增大;由于凹槽对滞止区域的流动产生了影响,带凹槽的前缘结构在不同工况下均表现出将原始结构高换热核心区分割为凹槽两侧突出边缘的高换热区和槽内低换热区的分布特征;凹槽可以显著降低前缘表面的换热强度,带浅凹槽的前缘结构在前缘表面的面平均努塞尔数相比原始前缘结构降低约7.9%~14.5%,带深凹槽的前缘结构相比原始前缘结构降低约9.1%~20.9%;与Reg=200,000相比,当Reg=150,000时,带凹槽的前缘结构相比原始结构的低换热优势更强。  相似文献   

7.
 本文介绍了来流马赫数5的条件下,典型球锥模型的粗糙壁热交换实验结果。模型头部半径R为27.4毫米,底部直径D为60毫米,对五个不同粗糙度的模型进行了实验。模型表面粗糙颗粒直径d分别为0、0.3、0.5、0.7、0.9毫米。风洞前室总压Pt为10~45公斤/厘米。,相应的来流雷诺数ReD为(O.8~3.6)×106。 实验结果表明:光滑壁模型表面是层流加热,驻点热流与层流理论计算值较一致。粗糙度的影响,在低总压条件下(10公斤/厘米)主要在于促使边界层的转捩和发展。随着风洞总压的提高,物面静压和局部雷诺数的相应增大,粗糙度对热流的影响才明显增强,而严重的区域在端头。在实验最大粗糙度和最大总压条件下(d=O.9毫米、pt=45公斤/厘米。),除驻点值外,热流与光滑壁层流驻点值相比(qi/qso)的峰值在音点区域且接近4,而在驻点,此模型有别于其它模型,较为特殊,比热流最大值接近6,看来这可能与驻点局部外形变化有关。  相似文献   

8.
沙斌  李鼎 《航空学报》1995,16(1):77-80
通过对血管内血液流动及传热过程的理论分析,建立了血液对流换热的数学模型,并采用数值分析的方法,完成了定壁温和定热流两种典型边界条件下血管内血液对流换热的计算。计算结果表明,当屈服数Y一定时,两种边界条件下的Nu相差约20%。由此得到,尽管血管中血液流动的速度分布相同,但由于壁温沿轴向的变化规律不同,对换热产生了影响。计算结果可用于人体热调节系统数学模型。  相似文献   

9.
邢云绯  仲峰泉  张新宇 《航空学报》2013,34(6):1269-1276
 采用了剪切应力输运(SST)k-ω两方程湍流模型并考虑近壁低雷诺数的修正对矩形横截面螺旋管内冷却水流动和传热特性进行了数值研究。数值分析了在不同入口雷诺数、曲率半径以及扭距条件下,螺旋管内的温度、速度场以及流线的变化,讨论了螺旋管内、外壁面对流传热系数的差异及产生机理,同时与直通管道传热性能进行了比较。研究发现由于离心力的作用,螺旋管内存在显著的二次流动,管内、外侧壁面对流传热存在差异。旋转一周后,螺旋管即进入了流动稳定状态,入口雷诺数可以显著提升螺旋管整体的对流换热效率,扭矩和曲率对内外壁面传热效果的影响不大,而窄高型的横截面构型可以显著改善螺旋管的传热效果。研究结果对应用矩形横截面螺旋管的冷却设计提供参考。  相似文献   

10.
涡轮叶片内部冷却通道传热和压力 分布特性的实验   总被引:2,自引:1,他引:1  
陈伟  阚瑞  任静  蒋洪德 《航空动力学报》2010,25(12):2779-2786
针对带45°肋片圆形弯头U型通道进行了传热和压力分布特性的实验研究.实验中进口雷诺数变化范围在30000~55000之间.研究表明,肋片引起的横向二次流在弯头前区域是强化传热的主要因素.不同雷诺数下传热分布和压力分布的趋势完全一致,但弯头区后半段上传热分布有所差异.通道中的最大压降出现在弯头区,进口雷诺数越大,弯头损失系数和总损失系数都有所减小.流体在圆形弯头中,加速效果没有矩形弯头强烈,弯头区和弯头后的传热较矩形弯头都有较大幅度地减小.   相似文献   

11.
直通式封严篦齿内部流动和换热的实验研究   总被引:1,自引:2,他引:1       下载免费PDF全文
为了研究外界因素对高推动比航空发动机中密封装置性能的影响,介绍了在吸气式内流传热风洞实验台测量了不同雷诺数和不同齿顶厚和齿隙比的工况下对篦齿腔内部流动的影响规律, 并利用该实验台对篦齿顶板表面的换热特性进行了研究. 测量结果说明了在篦齿腔中旋涡的分布及雷诺数变化对旋涡分布的影响.并得出了在不同雷诺数和T/C工况下对篦齿顶板表面换热特性的影响  相似文献   

12.
为掌握某型高压涡轮叶片叶尖及尾缘出流流量分配比例对内部冷却通道换热特性的影响,利用瞬态液晶测量技术研究不同进口雷诺数、4种出流流量分配比例下局部换热分布规律及平均换热变化趋势.实验结果表明:相同出流流量分配比例、不同进口雷诺数下局部换热分布规律相似,出流流量分配比例对局部换热分布规律有决定性影响,主要体现在第2及第3通道,叶尖出流孔1出流会削弱这两个通道的局部及平均换热;叶尖出流孔2和尾缘间出流流量分配流量比例变化对第1、第2通道的局部及平均换热影响不大,影响主要在第3通道,提高尾缘出流流量分配比例会显著增强第3通道局部及平均换热.   相似文献   

13.
罗稼昊  饶宇  杨力 《推进技术》2021,42(12):2789-2798
为掌握交错肋冷却结构应用在涡轮叶片不同区域的流动传热性能,针对一种交错肋冷却结构在三种不同流动配置中在等质量流量和子通道雷诺数工况下进行了数值计算研究,三种流动配置包含了径向流动配置(RFC), 横向流动配置(CFC)和转折流动配置(TFC)。通过比较本研究得到的数值模拟结果与公开文献中的实验数据,定性定量地验证了本次数值计算的有效性。在等冷却质量流量下,RFC配置拥有最高的平均努塞尔数和压力损失,而CFC和TFC配置的平均传热性能相似且明显降低,但压力损失大大减少。在相同的子通道雷诺数下,三种流动配置下的交错肋通道展现出相似的传热强化性能,但TFC配置的压力损失最小。在研究范围内,在RFC配置中肋表面的平均换热比主表面的平均换热约高出16.3%,而在CFC配置和TFC配置中该值则分别高出38.2%以及 30.6%。不同的流动配置会引发子通道内不同的流动特性,包括流动转折和子通道间的交互作用。  相似文献   

14.
带90°肋和双排出流孔通道换热特性的实验   总被引:3,自引:2,他引:1  
郭涛  朱惠人  许都纯 《航空动力学报》2010,25(10):2249-2254
采用瞬态液晶测试技术测量了带90°肋和双排出流孔通道有出流壁面的换热分布,研究了出流孔与肋的相对位置、通道雷诺数和出流比对换热的影响.研究表明:肋间换热分布受肋前壁面气流分离,肋间气流再附着和出流的共同作用影响;出流孔位置的改变不会对气流再附着的位置产生明显影响;出流孔靠近上游肋时,回流区的换热得到改善,再附着区的换热被出流作用加强,换热特性变好;平均换热强化效果随雷诺数增大而减小,随出流比增大呈增大趋势,但增大幅度较小.   相似文献   

15.
针对楔形凹腔内带前伸槽冲击板结构开展了传热特性的试验研究,分析了冲击板前伸槽伸出长度比(5~11)、前伸槽宽度比(2.5~8)和射流雷诺数(7900~31700)等参数对凹腔表面温度、展向平均努塞尔数和面积平均努塞尔数以及射流压力损失的影响.研究结果表明:相对于基准冲击板,带前伸槽的冲击板能够使得凹腔的射流冲击对流换热较基准冲击板有较大幅度的改善,但引起较大的射流压力损失;前伸槽伸出长度的增大使得凹腔表面射流冲击对流换热有较显著的增强,对射流压力损失的影响很小;增大冲击板前伸槽宽度可以使得凹腔表面对流换热得到一定程度的强化,但也会造成压力损失的增大.   相似文献   

16.
带射流的收缩型通道内部换热特性液晶瞬态实验   总被引:5,自引:0,他引:5  
将航空发动机进气道支板冲击腔简化和放大为一带射流的收缩型通道,并采用最新窄带热色液晶全表面瞬态测温技术对其内表面进行冲击换热实验,具体研究了射流雷诺数、孔径及孔间距变化对努赛尔数分布及大小的影响。实验结果表明:射流雷诺数的增大、孔径的增大及孔间距的减少均使通道内部换热得以加强,但努赛尔数分布的变化及平均努赛尔数的增幅不尽相同;并且侧壁换热受孔间距影响最大,前缘换热则受射流雷诺数的影响最大。  相似文献   

17.
本文尝试用瞬态实验方法, 在卢德威格风洞实验台上, 对小台阶高度 (H=4.0mm)的前台阶二维流场进行传热实验研究, 测定了当雷诺数为 11800至32200时的流场内热流通量和努谢尔特数的变化规律以及努谢尔特数随雷诺数变化的准则关系式。实验结果是令人满意的。   相似文献   

18.
To address the curvature effect on single-row chevron-nozzle jet impingement heat transfer on concave surface, a series of experiments are conducted in the present investigation.Four concave surfaces including one semi-cylindrical concave surface and three parabolic concave surfaces with different width-to-depth ratios are tested under three typical Reynolds numbers(Re = 5000,10000 and 15000) and several dimensionless nozzle-to-surface distances ranging from 1 to 8.The results show that the concave curvature has a clear impact on chevron-nozzle jet impingement heat transfer, tightly dependent on jet Reynolds number and impinging distance.In general, the semicylindrical concave surface produces the highest longitudinally-averaged Nusselt number at the leading line of concave surface.Under a low jet Reynolds number, the parabolic concave surface with a highly curved curvature produces higher longitudinally-averaged Nusselt number at the leading line and more uniform longitudinally-averaged Nusselt number distribution along the curvilinear direction.However, the longitudinally-averaged Nusselt number at the leading line of concave surface is the lowest for the highly curved surface under a high jet Reynolds number and large impinging distance.In comparison with the round-nozzle, chevron nozzle plays a more significant role on improving jet impingement heat transfer at small impinging distances.  相似文献   

19.
旋转条件下“冲击/出流”双层壁内部换热实验   总被引:1,自引:2,他引:1  
徐磊  常海萍  潘金栋 《航空动力学报》2007,22(10):1658-1662
以高效航空发动机涡轮叶片内部冷却为研究背景,在旋转条件下对带气膜出流的双层壁内部冲击换热特性进行了研究.实验在旋转与冲击方向相同和相反两种情况下进行,得到了冲击雷诺数Rej(5 000~10 000)、旋转数Ro(0~0.003 532)、无因次温比(Tw-Tf)/Tw(0.061~0.136)的变化对冲击靶面换热特性的影响规律;通过对"双层壁"的实验结果与常规"冲击/气膜"冷却结构的实验结果的比较发现,在不同的流动和旋转状态下,前者换热能力强于后者15%以上.   相似文献   

20.
《中国航空学报》2020,33(6):1611-1624
A hypersonic vehicle encounters a wide range of conditions during its complete flight regime. These flight conditions may vary from low to high Mach numbers with varying angles of attack. The near-wall viscous dissipation associated with flows at combined high Mach and Reynolds numbers leads to significant wall heat transfer rates and shear stresses. The shock wave/boundary-layer interaction results in a flow separation region, which commonly augments total pressure losses in the flow and lowers the efficiency of aerodynamic control surfaces such as fins installed on a vehicle. The standard turbulence models, when used to resolve such flows, result in incorrect separation bubble size for large separated flows. Therefore, it results in an inaccurate aerodynamic load, such as the wall pressures, skin friction distribution, and heat transfer rate. In previous studies, the application of the shock-unsteadiness correction to the standard two-equation k-ω turbulence model improved the separation bubble size leading to an accurate pressure prediction and shock definition with the assumption of constant Prandtl number. In the present work, the new shock-unsteadiness modification to the k-ω turbulence model is applied to the hypersonic compression corner flows. This new model with variable Prandtl number is based on the model parameter, which depends upon the local density ratio. The computed wall pressures, heat flux and flow field are compared to the experimental data. A parametric study is carried out by varying compression deflection angles, free stream Reynolds number and wall temperatures to compute the flow field and wall data accurately, particularly in the shock boundary layer interaction region. The new shock-unsteadiness modified k-ω model with variable Prandtl number shows an accurate prediction of initial pressure rise location, pressure distribution in the plateau region and heat flux in comparison to the standard k-ω model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号