首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
基于中心分级的高温升燃烧室性能预估   总被引:1,自引:0,他引:1  
针对高推质比航空发动机高温升燃烧室的需求,提出一种中心分级燃烧室的设计方案,在保证与现有单环腔燃烧室扩压器尺寸、外机匣最大直径及燃烧室出口尺寸相同的情况下,对设计模型进行了三维数值模拟,并与现有的单环腔燃烧室数值模拟结果及试验结果进行了对比分析.研究结果表明:采用中心分级燃烧室,在获得更高温升的同时,可获得比单环腔燃烧室更高的总压恢复系数和比单环腔燃烧室更低的燃烧室出口温度分布系数(OTDF),其慢车工况下的CO排放和NO排放略高于单环腔燃烧室;在设计总油气比为0.045的情况下,温升可达1360K,总压恢复系数大于等于0.96,OTDF小于等于0.14,出口径向温度分布系数(RTDF)小于等于0.10,燃烧效率大于等于0.987.  相似文献   

2.
高温升旋流燃烧室性能的数值分析   总被引:3,自引:2,他引:1       下载免费PDF全文
罗卫东  李锋  高贤智  高伟伟  高栋 《推进技术》2015,36(11):1686-1693
为了研究高温升燃烧室,采用数值研究的方法,对所设计的高温升多级旋流燃烧室和中心分级燃烧室与现有的单环腔燃烧室(SAC,原设计油气比为0.027)在设计油气比0.037条件下进行分析。研究结果表明:多旋流和中心分级的设计方案均可获得理想的燃烧性能参数,出口温度分布系数(OTDF)分别达到0.138和0.16,满足高温升燃烧室的设计指标,而SAC燃烧性能急剧恶化,不能满足设计指标。其中,中心分级燃烧室的技术优势十分明显,显示出作为高温升高热容燃烧室的发展前景;多旋流燃烧室则兼具高温升和低排放两方面优势。  相似文献   

3.
高温升三旋流燃烧室与双旋流燃烧室的性能对比   总被引:1,自引:1,他引:0  
采用参数化建模的方法,保持扩压器尺寸、外机匣最大直径以及燃烧室出口尺寸与单环腔燃烧室(SAC)一致,将燃烧室头部旋流器从双旋流结构设计为三旋流结构,采用三维数值模拟的方法对双旋流燃烧室(DSC)和三旋流燃烧室(TSC)的流动和燃烧过程进行数值模拟.对比研究了两种燃烧室在高温升条件下的性能.结果表明:传统的DSC已不能满足油气比为0.037的高温升燃烧室的燃烧效率等性能需求,TSC可获得比DSC更高的总压恢复系数、燃烧效率以及温升,更低的出口温度分布系数(OTDF)和径向出口温度分布系数(RTDF);在油气比为0.037情况下,设计的高温升TSC总压降在5%以内;OTDF为0.162,RTDF为0.106;燃烧效率大于99%.   相似文献   

4.
超高温升中心分级燃烧室设计及计算分析   总被引:1,自引:0,他引:1       下载免费PDF全文
针对航空发动机高推重比、高温升的需求,提出1种中心分级旋流燃烧室的设计方案。在保证与现有单环腔燃烧室(SAC)进出口尺寸、机匣尺寸限制不变的情况下,对设计模型进行了3维数值模拟,并与现有的单环腔燃烧室数值模拟结果及试验结果进行了对比分析。研究结果表明:设计油气比为0.045时,设计中心分级燃烧室温升可达1356 K,出口温度分布可达0.137,出口径向温度分布可达0.096;此外,与SAC相比,中心分级燃烧室可获得更低的总压损失,更低的出口温度分布系数以及高工况下可获得更高的燃烧效率;污染排放性能表明,中心分级燃烧室在慢车点CO排放比SAC的稍高,在设计点NOx排放按g/kg燃油计比SAC的低。  相似文献   

5.
双环预混旋流与单、双环腔燃烧室性能对比   总被引:3,自引:3,他引:0  
将中心分级的双环预混旋流(TAPS)燃烧室、单环腔燃烧室(SAC)及双环腔燃烧室(DAC)采用相同的扩压器尺寸、外机匣最大直径以及燃烧室出口尺寸,采用相同的数理模型,对TAPS燃烧室,SAC,DAC进行三维数值模拟.对比研究了TAPS燃烧室,SAC,DAC的总压恢复系数、燃烧效率、燃烧室出口温度分布系数、污染排放等性能参数.研究结果表明:采用TAPS燃烧室,可获得比SAC和DAC更高的总压恢复系数及燃烧效率;比SAC和DAC更低的燃烧室出口温度分布系数及NOx等污染的排放,尤其是设计工况下出口NOx排放.从研究结果来看中心分级的TAPS燃烧室的技术优势十分明显,是一种很有发展前景的高温升、低污染燃烧室.   相似文献   

6.
双环腔燃烧室置换单环腔燃烧室可行性研究   总被引:6,自引:4,他引:2  
在保持燃烧室的扩压器尺寸、外机匣最大直径以及燃烧室出口尺寸与单环腔燃烧室一致的前提下,将燃烧室重新设计为径向分级的双环腔结构.采用相同的物理模型,用Fluent软件对单、双环腔主燃烧室分别进行全流程的三维数值模拟.结果表明,采用双环腔燃烧室,可明显提高燃烧室的总压恢复系数、燃烧效率;降低燃烧室出口温度分布系数、NOx/CO等污染的排放,尤其是慢车状态下的CO排放.用双环腔燃烧室置换单环腔燃烧室是可行的.   相似文献   

7.
保持扩压器尺寸、外机匣最大直径以及燃烧室出口尺寸不变,将燃烧室分别设计为单环腔燃烧室(SAC)、双环腔燃烧室(DAC)、双环预混旋流(TAPS)燃烧室、中心分级燃烧室(CSC)和三旋流燃烧室(TSC)5种燃烧室结构,保持湍流、喷雾、燃烧、辐射及排放数理模型不变,对5种燃烧室进行三维数值模拟.对比研究了5种燃烧室的污染排放性能.结果表明:采用分级燃烧的DAC慢车状态下CO排放量最低,采用DAC在慢车状态下的CO排放量比SAC降低了近62%.采用分层燃烧的TAPS燃烧室的NOx排放量最低,采用TAPS的NOx排放量比SAC降低了近43.5%.   相似文献   

8.
三旋流燃烧室的数值模拟与试验   总被引:1,自引:1,他引:0       下载免费PDF全文
莫妲  程明  万斌  张军峰  林宏军 《航空动力学报》2017,32(11):2568-2575
为研究三旋流高温升燃烧组织技术,借助CFD技术对三旋流单头部燃烧室进行了数值模拟,采用结构化网格生成技术、realizable k ε湍流模型、PDF(概率密度)燃烧模型等对其进行模拟计算,获得了燃烧室内流场和燃烧场分布及各方面的燃烧性能参数,同时试验研究了三旋流单头部燃烧室的火焰筒壁温、出口温度分布、燃烧效率、排气冒烟数。结果表明:三旋流燃烧室的温升高达1130K,燃烧效率超过99%,火焰筒壁温分布较好,冒烟数不高于20;所采用的数学模型合理、计算方法可行,与试验数据基本吻合,其结果可为三旋流燃烧室设计提供参考。   相似文献   

9.
单环腔中心分级燃烧室流场数值模拟   总被引:12,自引:4,他引:8  
采用标准k-ε模型对旋流器几何参数改变给单环腔中心分级(SACS)燃烧室冷态流场带来的影响进行了数值模拟.计算结果表明,值班级旋流器旋向对SACS燃烧室流场的影响很小;分别调整三级旋流器旋流角时,外旋流器旋流角变化给SACS燃烧室流场带来的影响最大.因此,外旋流器是决定SACS燃烧室气流结构的关键因素.   相似文献   

10.
为了对高温升燃烧室性能进行计算分析,运用超大涡模拟方法开展数值模拟,并同步开展了雷诺平均数值模拟作为对 比。计算结果表明:旋流器设计与火焰筒开孔设计的匹配合理,Rothstein提出的射流迹线公式能够合理预测主燃孔的射流穿透。超 大涡模拟计算得到的出口径向温度分布系数的剖面曲线趋势和最大值位置均与试验结果符合较好。通过与试验结果进行定量比较 发现,在相同计算网格条件下,超大涡模拟方法预测高温升燃烧室综合燃烧性能的精度明显高于雷诺平均方法的。  相似文献   

11.
以气氢/气氧为推进剂,采用数值模拟方法,研究了同轴剪切喷嘴设计参数——氢氧速度比和氧压降比对单喷嘴燃烧室内燃烧过程和壁面热载的影响,并将绝热壁面条件、等温壁面条件的计算结果与试验结果进行了对比分析,结果表明:氢氧速度比增大,燃烧性能提高,壁面热载增加;氧压降比增大,燃烧性能下降,壁面热载减小;相比采用壁面绝热燃气温度,采用热流预示燃烧室壁面热载与真实情况更为接近.   相似文献   

12.
进气温度对航空发动机燃烧室辐射换热的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解燃烧室内火焰辐射换热特性,建立了某型航空发动机燃烧室计算模型,利用数值模拟方法,研究了不同进气温度下燃烧室内燃气温度、碳黑粒子生成及分布变化对燃烧室辐射热流量和火焰筒壁温的影响。研究结果表明:随着进气温度的升高,燃气温度升高,碳黑粒子质量分数增大,且高温区和碳黑粒子生成区均往前移;火焰筒壁温急剧升高,高温区集中在燃烧室中间段和掺混段,主燃区火焰筒壁温相对较低;辐射热流量不断增加,由3245 W增加到8674 W,辐射热流量主要受燃气辐射特性影响  相似文献   

13.
针对超燃冲压发动机研究中对燃烧室出口温度场的测量需求以及暂冲式超燃冲压发动机燃烧台架试验中的应用难点,开发了适用于瞬态燃烧场温度测量的单脉冲相干反斯托克斯拉曼反射(CARS)系统及CARS光谱计算和温度反演软件CARSCF。采用USED相位匹配方式来降低湍流影响,结合多尺度小波分析方法来实现CARS光谱降噪处理,提高信噪比。在暂冲式脉冲燃烧风洞上开展了来流马赫数2.6条件下超燃冲压发动机燃烧室出口温度测量试验,获取了超声速来流(冷态)建立、H2点火加热空气、建立超声速燃烧流场直至试验结束过程中的燃烧室出口温度,以及煤油/空气燃烧时燃烧室出口温度场分布。结果显示,超声速冷流时温度处于低温(约205K)状态,随着H2点火加热来流空气,来流温度上升至853K;随着煤油/Air点火,温度急剧上升,稳定燃烧状态下燃烧流场温度为1970K±144K。燃烧室出口截面温度场分布测量结果显示,高温区位于燃烧室出口截面上侧区域,而燃烧室出口截面上中间区域的温度低于上下两侧。燃烧室出口温度分布CARS测量结果与火焰自发光成像结果一致,表明单脉冲CARS技术用于瞬态燃烧流场温度测量的可行性。  相似文献   

14.
为研究驻涡燃烧室在前钝体燃料喷射状况下的燃烧性能,采用3维数值仿真模拟方法,对驻涡燃烧室前钝体燃料喷射 状况下的燃烧效率及燃烧室性能与无前钝体燃料喷射状况下的燃烧性能进行了对比分析,并对驻涡燃烧室的冷流以及燃烧状态 下的燃烧室性能进行了系统研究。燃烧室温度分布表明:前钝体顶部燃料喷射在0.2~0.7的喷射系数范围内,缩短了燃烧室火焰 长度,提高了燃烧室在相同轴向长度下的燃烧效率,使燃烧室更加紧凑;驻涡燃烧室前钝体顶部燃料喷射孔的孔径在一定范围内 的变化对燃烧室的燃烧效率、出口温度分布系数以及总压损失影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号