共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国航空学报》2021,34(4):160-173
Ultrasonic vibration-assisted milling has been widely applied in machining the difficult-to-cut materials owing to the remarkable improvements in reducing the cutting force. However, analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibration-assisted milling metal matrix composites are still needed to be developed. In this paper, an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB2/7050Al metal matrix composites. During modeling, change of motion of the cutting tool, contact of tool-chip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model. Meanwhile, material properties, tool geometry, cutting parameters and vibration parameters were taken into consideration. Furthermore, the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB2/7050Al metal matrix composites. The predicted cutting forces show to be consistent well with the measured cutting forces. Besides, the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4% to 15.1%. The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB2/7050Al metal matrix composites, which was proved with general applicability. 相似文献
2.
A deduced cutting force prediction model for circular end milling process is presented in this paper. Traditional researches on cutting force model usually focus on linear milling process which does not meet other cutting conditions, especially for circular milling process. This paper presents an improved cutting force model for circular end milling process based on the typical linear milling force model. The curvature effects of tool path on chip thickness as well as entry and exit angles are analyzed, and the cutting force model of linear milling process is then corrected to fit circular end milling processes. Instantaneous cutting forces during circular end milling process are predicted according to the proposed model. The deduced cutting force model can be used for both linear and circular end milling processes. Finally, circular end milling experiments with constant and variable radial depth were carried out to verify the availability of the proposed method. Experiment results show that measured results and simulated results corresponds well with each other. 相似文献
3.
《中国航空学报》2020,33(2):730-739
In order to ensure machining stability, curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools. For five-axis flank milling, it is difficult to meet both of the constraints because tool path points and tool axis vectors interact with each other. In this paper, multiple relationships between tool path points and tool axis vectors with cutting force and kinematics of machine tools are established, and the strategies of corner-looping milling and clothoidal spirals are combined so as to find feasible solutions under both of the constraints. Tool path parameters are iterated by considering the maximum cutting force and the feasible range of the tool axis vector, and eventually a curvature continuity five-axis flank milling tool path with smooth cutting force is generated. Machining experimental results show that the conditions of cutting force are satisfied, vibration during the process of machining is reduced, and the machining quality of the surface is improved. 相似文献
4.
It is extremely important to select appropriate feedrates for the stable machining of parts with ruled surface in modern aviation industrial applications. However, the current studies take too much time to achieve this goal. Therefore, this paper presents an efficient feedrate optimization method for constant peak cutting force in five-axis flank milling process. The solution method of the instantaneous undeformed chip thickness(IUCT) is proposed using least squares theory with the cutter entry ... 相似文献
5.
Predicting the cutting forces required for five-axis flank milling is a challenging task due to the difficulties involved in determining the Undeformed Chip Thickness(UCT) and CutterWorkpiece Engagement(CWE). To solve these problems, this paper presents a new mechanistic cutting force model based on the geometrical analysis of a flank milling process. In the model,the part feature and corresponding cutting location data are taken as input information. The UCT considering cutter runout is calculated according to the instantaneous feed rate of the element cutting edges. A solid-discrete-based method is used to precisely and efficiently identify the CWE between the end mill and the surface being machined. Then, after calibrating the specific force coef-ficients, the mechanistic milling force can be obtained. During the validation process, two practical operations, three-axis flank milling of a vertical surface and five-axis flank milling of a nondevelopable ruled surface, are conducted. Comparisons between predicted and measured cutting forces demonstrate the reliability of the proposed cutting force model. 相似文献
6.
《中国航空学报》2016,(3):824-830
Machining of carbon/carbon (C/C) composite materials is difficult to carry out due to its high specific stiffness, brittleness, anisotropic, non-homogeneous and low thermal conductivity, which can result in tear, burr, poor surface quality and rapid wear of cutters. Accurate and fast pre-diction of cutting forces is important for milling C/C composite materials with high quality. This paper presents an alternative cutting force model involving the influences of the directions of fiber. Based on the calculated and experimental results, the cutting forces’ coefficients of 2.5D C/C com-posites are evaluated using multiple linear regression method. Verification experiment has been car-ried out through a group of orthogonal tests. Results indicate that the proposed model is reliable and can be used to predict the cutting forces in ball-end milling of 2.5D C/C composites. 相似文献
7.
TC4的铣削加工中铣削力和刀具磨损研究 总被引:2,自引:0,他引:2
通过TC4铣削加工时的铣削力试验,研究了干切削时和有氮气介质铣削时影响铣削力大小的几个因素,为提高金属去除率优化了切削参数。同时通过刀具磨损试验,对上述两种铣削方式,比较了在不同的切削速度下铣削时铣刀后刀面的磨损,证实了以氮气为切削介质能够大大地改善刀具的磨损状况和提高刀具的寿命。 相似文献
8.
Guolong ZHAO Lianjia XIN Liang LI Yang ZHANG Ning HE Hans N?rgaard HANSEN 《中国航空学报》2023,36(7):114-128
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milli... 相似文献
9.
螺旋铣削加工工艺具有降低轴向力,改善排屑、散热条件等优点,螺旋铣削力是其重要过程指标之一。对单向CFRP螺旋铣削力建模方法展开研究,预测给定加工参数下的螺旋铣削力。首先,通过对螺旋铣削过程进行运动学分析和切屑几何分析,建立了螺旋铣削过程中侧刃、底刃动态切屑层模型,纤维切削方向角度模型和动态切削力计算模型。然后,分别通过侧刃直线槽铣实验和底刃半齿插铣实验,对各个切削方向角度下侧刃、底刃切削力系数进行了标定,并利用人工神经网络对切削力系数进行拟合。最后,将标定所得的切削力系数代入动态切削力计算模型中,建立了单向CFRP螺旋铣削过程动态切削力预测模型,并通过实验验证了模型的准确性。与现有模型相比,该模型不仅能够预测刀具螺旋运动周期内的切削力变化情况,还可以对每个刀具自转周期内的细节进行预测,通过考虑纤维切削方向角度对切削力系数的影响,反映了单向CFRP材料的各向异性,较为准确地预测了螺旋铣削力。 相似文献
10.
《中国航空学报》2016,(6):1852-1858
In a milling operation, there must be processes of a cutter entering and exiting the work-piece boundary. The cutter exit is usually in the feed direction and the dynamic response is different from that in the normal cutting process. This paper presents a new time-domain modeling of mechanics and dynamics of the cutter exit process for the slot milling process. The cutter is assumed to exit the workpiece for the first time with one tooth right in the feed direction. The dynamic chip thickness is summed up along the feed direction and compared with the remaining workpiece length in the feed direction to judge whether the cutter is ready to exit the workpiece or not. The developed model is then used for analyzing the cutting force and machining vibration in the cutter exit process. The developed mathematical model is experimentally validated by comparing the simulated forces and vibrations against the measured data collected from real slotting milling tests. The study shows that stable cutting parameters cannot guarantee stable cutting in a cutter exit process and further study can be performed to control the vibration amplitude in this specific process. 相似文献
11.
Renjie JI Qian ZHENG Yonghong LIU Hui JIN Fan ZHANG Shenggui LIU Baokun WANG Shuaichen LU Baoping CAI Xiaopeng LI 《中国航空学报》2022,35(3):484-493
The nickel-based superalloy Inconel 718 is treated with Coupled Ultrasonic and Electric Pulse Treatment(CUEPT), and the surface grain is refined from the average size of 9550.0 nm to287.9, 216.3, 150.5, 126.3, 25.8 nm by different effective treatment currents, respectively. The ultraprecision turning experiments are carried out on the processed workpiece after CUEPT. The experimental results show that the average cutting force increases with the decrease of surface grain size.Moreover, a mathema... 相似文献
12.
弹性环式挤压油膜阻尼器动力学特性系数测试 总被引:1,自引:0,他引:1
搭建了弹性环式挤压油膜阻尼器(ERSFD)的动力学特性测试试验台。利用两个正交方向的简谐激励对ERSFD进行了激振试验,在轴心为圆时测得了阻尼器的位移和载荷数据,并结合阻尼器质心的运动方程分别识别ERSFD油膜和弹性环的动力学特性系数。结果表明弹性环与油膜均具有显著的阻尼和刚度,其中油膜的阻尼和刚度系数随着凸台高度的升高迅速降低,弹性环的刚度和阻尼受凸台高度影响较小;弹性环的厚度对油膜的刚度和阻尼无显著影响;油膜阻尼随供油压力的升高先增大后不变,油膜刚度随着供油压力的升高先增大后减小。不确定度分析结果表明油膜的四个动力学特性系数Cxx、Cyy、Kxx、Kyy的不确定度分别为12.2%、11.5%、18.2%、12.7%。弹性环的四个动力学特性系数Cxx、Cyy、Kxx、Kyy的不确定度分别为30.7%、33.1%、17.0%、12.8%。 相似文献
13.
14.
15.
In this paper, a multi-delay milling system considering helix angle and run-out effects is firstly established. An exponential cutting force model is used to model the interaction between a work-piece and a cutting tool, and a new approach is presented for accurately calibrating exponential cutting force coefficients and cutter run-out parameters. Furthermore, based on an implicit multi-step Adams formula and an improved precise time-integration algorithm, a novel stability prediction method is proposed to predict the stability of the system. The involved time delay term and periodic coefficient term are integrated as a comprehensive state term in the integral response which is approximated by the Adams formula. Then, a Floquet transition matrix with an arbitrary-order form is constructed by using a series of matrix multiplication, and the stability of the system is determined by the Floquet theory. Compared to classical semi-discretization methods and full-discretization methods, the developed method shows a good performance in convergence, efficiency, accuracy, and multi-order complexity. A series of cutting tests is further carried out to validate the practicability and effectiveness of the proposed method. The results show that the calibration process needs a time of less than 5 min, and the stability prediction method is effective. 相似文献
16.
采用平均铣削力系数模型对数控加工过程中的铣削力进行仿真预测.在此基础上,综合考虑数控加工过程中机床、刀具以及工件3方面限制加工效率的因素,对主轴转速、进给速度、径向切宽以及轴向切深4个参数进行优化.利用VC与Matlab编程,开发了"中低速数控铣削过程力学仿真与参数优化系统".针对航空难加工材料GH4169,在SandviK推荐参数基础上进行仿真优化.结果表明,基于力学仿真的数控铣削参数优化技术在难加工材料加工中可提高加工效率12%~378%. 相似文献
17.
对机械连接中测量钉的轴力的各种测试方法进行总结,对复合材料多钉连接中钉载的多种测试方法进行分析,提出了一种能同时测量钉的轴力和剪切力的传感器。根据钉的受力情况和材料力学理论推导出钉的轴力和剪切力的计算表达式。设计了传感器的轴力和剪切力的两套测试装置,分别进行了轴力和剪切力的测试试验。对传感器测试结果的载荷-应变曲线的线性度、重复性进行了分析研究。测试结果表明:传感器的载荷-应变曲线具有良好的线性度和重复性,能满足工程上对测量传感器的技术要求。同时通过测试也发现,传感器的安装角对轴力和剪切力的测量结果无影响;安装紧力矩对剪切力的测量结果有影响,但随着外载的增大,影响会逐渐减小。 相似文献
18.
四分量片式铰链力矩天平技术及风洞实验应用研究 总被引:2,自引:0,他引:2
针对目前风洞铰链力矩实验中的一种三分量片式结构铰链力矩天平没有轴向力测量元件的不足,提出一种切实可行的四分量片式结构铰链力矩天平设计方案,进行了物理样机的研制,应用于某模型升降舵风洞铰链力矩实验中。实验结果与理论分析获得了良好的一致性,在舵面偏角为21°时,由忽略轴向力测量带来的舵面法向力系数相对误差百分比为14.7%,舵面弦向压心位置相对误差百分比为17.2%。 相似文献
19.
以苏通长江大桥为研究背景,研发了一套测压装置,通过测压法对苏通长江大桥施工状态主梁断面三分力系数进行了现场实测研究,并把现场实测所得结果与风洞试验结果进行了对比,研究了雷诺数对三分力系数的影响。结果表明:雷诺数对阻力系数影响较大,现场实测值比风洞试验所得值小约15%,对升力系数及力矩系数影响较小。因此,针对特大桥梁,在利用风洞实验获取三分力系数时应尽量使雷诺数接近实际情况,否则结果可能偏于保守。 相似文献
20.
基于厚板的弹性环式挤压油膜阻尼器建模及动力学特性系数识别 总被引:1,自引:1,他引:1
利用数值方法完善了弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的流固耦合计算模型,其中利用雷诺方程建立油膜的控制方程,利用厚板单元建立了弹性环的运动方程并采用分时迭代方法实现了弹性环-油膜的控制方程的耦合求解从而获得瞬时内外油膜的压力,并进一步识别了油膜以及ERSFD的动力学特性系数。结果表明ERSFD的阻尼系数受凸台高度影响最大,凸台高度从0.15mm增加到0.30mm, ERSFD的阻尼系数从5790(N·s)/m减小到718(N·s)/m; ERSFD刚度系数则主要取决于弹性环的厚度以及凸台数目,弹性环厚度从0.8mm增加到1.0mm,ERSFD的刚度从1.44×106N/m增加到2.51×106N/m。 相似文献