首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WSO-UV project     
During last three decades, astronomers have enjoyed continuous access to the 100–300 nm ultraviolet (UV) spectral range where the resonance transitions of the most abundant atoms and ions (at temperatures between 3000 and 300 000 K) reside. This UV range is not accessible from ground-based facilities. The successful International Ultraviolet Explorer (IUE) observatory, the Russian ASTRON mission and successor instruments such as the Galaxy Evolution Explorer (GALEX) mission or the COS and STIS spectrographs on-board the Hubble Space Telescope (HST) prove the major impact of observations in the UV wavelength range in modern astronomy. Future access to space-based observatories is expected to be very limited. For the next decade, the post-HST era, the World Space Observatory – Ultraviolet (WSO–UV) will be the only 2-m class UV telescope with capabilities similar to the HST. WSO–UV will be equipped with instruments for imaging and spectroscopy and it will be a facility dedicated, full-time, to UV astronomy. In this article, we briefly outline the current status of the WSO–UV mission and the science management plan.  相似文献   

2.
Swift is a first-of-its-kind multiwavelength transient observatory for γ-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of γ-ray bursts and their afterglows, as well as for using bursts to probe the early Universe. Swift will also monitor the soft gamma repeaters and perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field γ-ray detector, will detect >100 γ-ray bursts per year with a sensitivity 5× that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location within 20–70 s to determine 0.3–5.0″ positions and perform optical, UV, and X-ray spectrophotometry. Strong education/public outreach and follow-up programs will help to engage the public and the astronomical community. Swift launch is planned for late 2004.  相似文献   

3.
The ROSAT (Röntgensatellit) X-ray astronomy satellite has completed the first all-sky X-ray and XUV survey with imaging telescopes. About 60,000 new X-ray and 400 new XUV /1/ sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source X-ray skymaps, the positional accuracy obtained for the X-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard X-rays as well as identifications from optical follow-up observations are presented.  相似文献   

4.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

5.
Japanese future space programs for high energy astrophysics are presented. The Astro-E2 mission which is the recovery mission of the lost Astro-E has been approved and now scheduled to be put in orbit in early 2005. The design of the whole spacecraft remains the same as that of Astro-E, except for some improvements in the scientific instruments. In spite of the five years of delay, Astro-E2 is still powerful and timely X-ray mission, because of the high energy resolution spectroscopy (FWHM 6 eV in 0.3–10 keV) and high-sensitivity wide-band spectroscopy (0.3–600 keV). The NeXT (New X-ray Telescope) mission, which we propose to have around 2010, succeeds and extends the science which Astro-E2 will open. It will carry five or six sets of X-ray telescopes which utilize super-mirror technology to enable hard X-ray imaging up to 60–80 keV. In mid-2010s, we would participate in the European XEUS mission, which explores the early (z>5) “hot” universe.  相似文献   

6.
A primary scientific objective of the ROSAT mission is to perform the first all-sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. A large number of new sources (? 105) will be discovered and located with an accuracy of 1 arcmin or better. These will comprise almost all astronomical objects from nearby normal stars to distant quasistellar objects. After completion of the survey which will take half a year the instrument will be used for detailed observations of selected sources with respect to spatial structure, spectra and time variability. In this mode which will be open for guest observers ROSAT will provide substantial improvement over the imaging instruments of the Einstein observatory.The main ROSAT telescope consists of a fourfold nested mirror system with 83 cm aperture having three focal plane instruments. Two of them will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 2°, an angular resolution of ≈ 30″ in the pointing mode and a spectral resolution ΔE/E ≈ 45% FWHM at 1 keV. The third focal instrument will be a high resolution imager (≈ 3″). The main ROSAT telescope will be complemented by a parallel looking Wide Field camera which extend the spectral coverage into the XUV band.  相似文献   

7.
With its ability to look at bright galactic X-ray sources with sub-millisecond time resolution, the Rossi X-ray Timing Explorer (RXTE) discovered that the X-ray emission from accreting compact stars shows quasi-periodic oscillations on the dynamical timescales of the strong field region. RXTE showed also that waveform fitting of the oscillations resulting from hot spots at the surface of rapidly rotating neutron stars constrain their masses and radii. These two breakthroughs suddenly opened up a new window on fundamental physics, by providing new insights on strong gravity and dense matter. Building upon the RXTE legacy, in the Cosmic Vision exercise, testing General Relativity in the strong field limit and constraining the equation of state of dense matter were recognized recently as key goals to be pursued in the ESA science program for the years 2015–2025. This in turn identified the need for a large (10 m2 class) aperture X-ray observatory. In recognition of this need, the XEUS mission concept which has evolved into a single launch L2 formation flying mission will have a fast timing instrument in the focal plane. In this paper, I will outline the unique science that will be addressed with fast X-ray timing on XEUS.  相似文献   

8.
The Scanning Sky Monitor is one of the experiments onboard the ASTROSAT, an Indian multiwavelength astronomy satellite mission. This experiment will detect and monitor X-ray transients in the energy band 2–10 keV. It is similar in design to the ASM on RXTE. It consists of position-sensitive proportional counters with one-dimensional mask. We describe the configuration of the experiment. We also discuss some of the results obtained using a detector which has already been fabricated and tested in our laboratory.  相似文献   

9.
EUVITA is a set of 8 extreme UV normal incidence imaging telescopes, each of them sensitive in a narrow band (λ/Δλ = 15 to 80), centered at wavelengths between 50 and 175 Å. Each telescope has an effective area of a few cm2; a field of view of 1.2° and a spatial resolution of 10 arcsec.

EUVITA will be flown on the Russian mission SPECTRUM X-G. This satellite will be launched in a highly eccentric orbit with a period of 4 days, allowing long, uninterrupted observations (e.g. 105 seconds). EUVITA's narrow spectral bands allow the measurement of source parameters such as temperature or power law index as well as interstellar absorption, and will resolve groups of strong lines emitted by optically thin hot plasmas.  相似文献   


10.
More than 100 supersoft X-ray sources (SSS) are reported in 20 external galaxies, the Magellanic Clouds (MCs) and our Galaxy. The effective temperatures of the brighter SSS are 20–100 eV. SSS with luminosities below ≈3 × 1038 erg s−1 are consistent with accreting white dwarfs (WDs) with steady nuclear burning or post-novae. Optical identifications exist for SSS in our Galaxy and the MCs (including orbital period determinations) and for SSS in M31 (with novae and symbiotic stars, SySs). High resolution X-ray spectra of the brightest SSS in our Galaxy and the MCs reveal the existence of spectral features due to high gravity WDs. Timing studies in X-rays (combined with the optical) of the stable nuclear burning phase in steady nuclear burning sources and in post-novae allow to constrain the mass accretion rate onto and the mass of the nuclear burning WD. The nature of a few SSS with luminosities 1039 erg s−1 remains unclear.  相似文献   

11.
The HXMT mission concept consists of a slat-collimated hard X-ray detector assembly sensitive in 20~250 keV with a collection area of about 5000 cm2. Based on the reconstruction technique by direct demodulation developed in recent years, HXMT is mainly devoted to performing a hard X-ray all-sky imaging survey with both high sensitivity and high spatial resolution. It can also be used to make pointed observations of X-ray sources to study their spectroscopic and temporal properties in details. The main detector of HXMT consists of 18 individual cylindrical NaI(T1)/CsI(Na) phoswich modules, each with anarea of 283.5 cm2 and a field of view of 5.7°× 1.1° (FWHM). Its spatial resolution and position accuracy are 5′ and 1′ by using the direct demodulation in 1994, and in 2000 its feasibility and technical demonstration study was selected as a project under the Major State Basic Research Program of China. In October 2005, this project entered the full design phase and was listed as a candidate for the first dedicated astronomy satellite around 2010. We are now also considering secondary low energy instruments for this satellite.  相似文献   

12.
13.
The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m2 equal to 10 times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.  相似文献   

14.
This paper presents the scientific objectives of the Solar Physics and Interferometry Mission (SPI), describes succinctly the model payload and summarizes mission's issues. Novel instrumentation (interferometry) and clever mission design (small platform on low orbit with high telemetry and dedicated smaller platform on hexapod for permanently Sun-centered instruments) allow both spectral imaging and Helioseismology at very high spatial and temporal resolutions. Although not retained by ESA, this mission could become reality through NASA MIDEX and/or CNES PROTEUS opportunities as soon as 2007–2008.  相似文献   

15.
The interstellar heliopause probe (IHP) is one of ESA’s technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme.

Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality.

To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s2, which corresponds to a 245 × 245 m2 solar sail and a sail thickness of 1–2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe.

In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.  相似文献   


16.
ASTROSAT     
The ASTROSAT satellite is an Indian National Space Observatory under development in India. Due for launch in 2010, ASTROSAT will carry a complement of five scientific instruments enabling simultaneous observations from the optical through to the hard X-ray energy band. This capability will enable broad-band spectroscopy and high time-resolution monitoring of both galactic and extra-galactic targets, such as X-ray binaries and AGN. One of the instruments is being built in collaboration with the Canadian Space Agency and another in collaboration with the University of Leicester. ASTROSAT also carries a scanning sky monitor to observe the variable X-ray sky. After an initial period of science verification and guaranteed time, a certain fraction of ASTROSAT observing time will also be made available to the community via a call for proposals. Here I summarise the instrument complement and principle scientific objectives of the mission.  相似文献   

17.
Preliminary observing achievements by the Super Soft X-ray Detector and the γ-ray Detector in the fields of cosmic gamma-ray bursts, solar X-ray, bursts and cosmic X-ray/γ-ray background radiation are summarized. The detectors are aboard the spacecraft Shenzhou-2 that was launched on 2001 January 10. The scientific mission and general situation of the instruments are briefly described.  相似文献   

18.
利用综合孔径射电望远镜对太阳进行观测时,通过对图像中存在的明亮扩展源进行准确建模并移除,可以更好地观测视场内的微弱源并提高图像的动态范围。在射电天文领域,主要利用CLEAN算法对图像中的明亮源进行移除,以显示微弱的背景。然而,使用图像像素作为基函数的CLEAN算法的固有限制导致其对扩展源的建模效果较差。为了克服这种限制,将基于长椭球面波函数(Prolate Spheroidal Wave Functions,PSWF)的去卷积方法应用于太阳射电成像。PSWF最优正交基由脏图中的感兴趣区域(Region of Interest,ROI)和UV覆盖共同决定。为了验证该方法的有效性,基于PSWF正交基对均匀圆环阵观测的太阳射电图像进行去卷积,并从动态范围和保真度两个方面定量化对比了CLEAN算法和基于PSWF正交基方法的性能。基于PSWF正交基去卷积方法剩余脏图中的微弱源更接近真实情况且动态范围更高。  相似文献   

19.
INTEGRAL is the ESA lead International Gamma-Ray Astrophysical Laboratory, successfully launched the 17th October 2002 from Baikonur with a Proton vehicle. In view of the high sensitivity of the two γ-ray instruments IBIS and SPI and their capability to provide at the same time image, spectra and time profiles of all the sources in their wide field of view, a key project was approved as “Core Programme” to obtain deep observations of the Galactic Centre (GCDE) and to exploit regular scan of the whole Galaxy Plane since the beginning of the mission. This paper will briefly review the main astrophysical results obtained in the field of high energy Galactic sources with the INTEGRAL/IBIS γ-ray Imager onboard INTEGRAL, and make a comparison with the previous scenario depicted by the BeppoSAX and RXTE results.  相似文献   

20.
UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system astronomy and to astronomy. It covers the wavelength range of 500 to 1250 Å, with sufficient spectral resolution to separate atomic emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and extragalactic sources. UVSTAR will make useful measurements of emissions from the Earth's atmosphere as well. UVSTAR consists of a pair of telescopes and concave-grating spectrographs that cover the overlapping spectral ranges of 500–900 Å and 850–1250 Å. The telescopes use two 30 cm diameter off-axis paraboloids having a focal length of 1.4 m. An image of the target is formed at the entrance slits of two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCDs. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. The spectrograph package has internal gimbals which allow rotation of ±3° about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the Orbiter. Responsibilities for the implementation and utilization of UVSTAR are shared by groups the U.S. and Italy. UVSTAR is scheduled for flight in early 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号