首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

2.
In darkness, protonemata of Pohlia nutans (Hedw.) grew negatively gravitropically (upwards). However, not all filaments became gravitropic immediately after transfer to darkness. Some of them (~20%) for several days grew in different directions with respect to gravity. The apical cells of those protonemata predominantly contained multiple chloroplasts. The intensity of chlorophyll fluorescence rapidly decreased in the apical cells of such protonemata while starch content increased in comparison with upright growing protonemata. Light, especially in the red and blue part of the spectrum, inhibited protonemal gravitropism. Red light induced stronger inhibitory effects than blue light. Red light of 1.0 to 1.5 micromoles m-2 s-1 intensity induced bud differentiation in apical cells on almost all side branches of main protonemal filaments. Bright fluorescence of F-actin bundles in the tip of apical protonematal cells and a delicately fluorescing network enclosing plastids basal to the tip in a sedimentation zone were visualized. Bright fluorescence of actin as local patches and fine prominent axially oriented bundles was observed in cells of gametophore buds.  相似文献   

3.
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1.  相似文献   

4.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.  相似文献   

5.
Moss protonemata exhibit negative gravitropism and the amyloplasts of the apical cell seem to play a key role in protonemal gravisensitivity. However, the mechanisms of this process are still poorly understood. Previously, we have shown that Ceratodon protonemata grown on agar-medium demonstrated greater gravicurvature than protonemata grown on medium with 11 mM glucose. In this study, we have examined whether gibberellic acid (GA), which promotes alpha-amylase expression, influences graviresponse of C. purpureus protonemata (strains WT-4 and WT-U) and how this event interacts with exogenous soluble sugars. After gravistimulation the WT-4 strain curved about twice as fast as the WT-U strain. However, responses of both strains to added substances were similar. High concentration of glucose (0.11 M) caused a decrease in protonema curvature, while the same concentration of sucrose did not significantly change the angles of curvature compared with controls. GA at 0.1 mM and higher concentrations inhibited gravitropism, and caused some apical cells to swell. The possible involvement of the carbohydrates in gravitropism is discussed.  相似文献   

6.
In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol·m−2·s−1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03–0.37 μmol·m−2·s−1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata.  相似文献   

7.
Moss protonemal growth direction is controlled by at least three factors, photo-, gravi- and autotropism. It is possible to experimentally separate these factors and to control selectively their morphological appearance. In darkness protonema grow negatively gravitropically, and unilateral illumination initiated positive phototropism. Red light suppressed auto- and gravitropism, blue light suppressed only gravitropism. Green light allowed both gravi- and autotropism. The effect of light on gravitropism might involve changes in starch synthesis.  相似文献   

8.
The superficial cells of dark-grown moss shoots give rise to negatively gravitropic protonemata, whatever the orientation of the shoot. Shoot orientation, however, does affect from which side of the shoot the protonemata form and the direction of their growth. Protonemata from horizontal shoots grow out at a near-right angle to their supporting axes and are initiated more or less evenly along the upper side of the stem. Protonemata arising from vertically-oriented shoots in either an upright or an inverted position grow straight at an acute angle to the stem axis. The difference in the growth direction of the protonemata seems to be conditioned by the different position of the growth zone of the protonemal outgrowths, and subsequently that of the apical protonemal cells, with respect to the gravity vector. Observations suggest that the shoot protonemata, in conditions of clinorotation, persist in their original growth direction. Results also indicate that, in darkness, gravity determines only the site of protonemata initiation, not the process of initiation itself. Light, by contrast, by acting through both phytochrome and high-energy reaction systems, triggers the initiation process and defines the location of protonemata.  相似文献   

9.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

10.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

11.
Gravitropically tip-growing cell types are attractive unicellular model systems for investigating the mechanisms and the regulation of gravitropism. Especially useful for studying the mechanisms of positive and negative gravitropic tip-growth are characean rhizoids and protonemata. They originate from the same cell type, show the same overall cell shape, cytoplasmic zonation, arrangement of actin and microtubule cytoskeleton, use statoliths for gravisensing, but show opposite gravitropism. In both cell types, actin microfilaments are complexly organized in the apical dome,where a dense spherical actin array is colocalized with spectrin-like epitopes and a unique endoplasmic reticulum aggregate, the structural center of the Spitzenk?rper. The opposite gravitropic responses seem to be based on differences in the actin-organized anchorage of the Spitzenk?rper and the actin-mediated transport of statoliths. In negatively gravitropic (upward bending) protonemata, the statoliths-induced drastic upward shift of the cell tip is preceded by a relocalization of dihydropyridine-binding calcium channels and of the apical calcium gradient to the upper flank (bending by bulging). Such relocalizations have not been observed in positively gravitropically responding (downward growing) rhizoids in which statoliths sedimentation is followed by differential flank growth (bending by bowing). This paper reviews the current knowledge and hypotheses on the mechanisms of the opposite gravitropic responses in characean rhizoids and protonemata.  相似文献   

12.
Moss protonemata are a valuable system for studying gravitropism because both sensing and upward curvature (oriented tip growth) take place in the same cell. We review existing evidence, especially for Ceratodon purpureus, that addresses whether the mass that functions in sensing is that of amyloplasts that sediment. Recent experiments show that gravitropism can take place in media that are denser than the apical cell. This indicates that gravity sensing relies on an intracellular mass rather than that of the entire cell and provides further support for the starch-statolith hypothesis of sensing. Possible mechanisms for how amyloplast mass functions in sensing and transduction are discussed.  相似文献   

13.
Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.  相似文献   

14.
Laboratory measurements show that lichens are extremely tolerant of freezing stress and of low-temperature exposure. Metabolic activity recovered quickly after severe and extended cold treatment. Experimental results demonstrate also that CO2 exchange is already active at around −20°C. The psychrophilic character of polar lichen species is demonstrated by optimum temperatures for net photosynthesis between 0 and 15°C. In situ measurements show that lichens begin photosynthesizing below 0°C if the dry thalli receive fresh snow. The lowest temperature measured in active lichens was −17°C at a continental Antarctic site. The fine structure and the hydration state of photobiont and mycobiont cells were studied by low-temperature scanning electron microscopy (LTSEM) of frozen hydrated specimens. Water potentials of the frozen system are in the range of or even higher than those allowing dry lichens to start photosynthesis by water vapor uptake at +10°C. The great success of lichens in polar and high alpine regions gives evidence of their physiological adaptation to low temperatures. In general lichens are able to persist through glacial periods, but extended snow cover and glaciation are limiting factors.  相似文献   

15.
Spores of Bacillus subtilis (TKJ 3412), cells of Deinococcus radiodurans R1 (wild type) and conidia of Aspergillus ochraceus (strain 3174) have been UV irradiated (254 nm) in the dry state (3% relative humidity, argon) or in aqueous suspension at room temperature, at −55°C to −70°C and at −165°C to −170°C. The following effects have been analyzed: decrease in viability, occurrence of DNA strand breaks (pulsed-field gel electrophoresis) and production of DNA-protein cross-links (membrane filter method). The loss in viability is usually more pronounced at around −70°C than at room temperature, but it is lowest around −170°C. The kind of prevailing DNA damage varies from organism to organism. The amount of UV induced DNA-protein cross-link products steadily decreases with the temperature and is lowest at −170°C. The decrease in highly polymeric DNA by double strand breaks follows no universal pattern. The observed hypersensitivity of the three very different species at −70°C can therefore not be simply explained on the basis of the number of DNA lesions analyzed in the course of this work. We suggest that also the changing state of cellular water below and above about −130°C significantly contributes to the change in photosensitivity.  相似文献   

16.
Hornet ( , Hymenoptera: Vespinae) workers, queens and males, aged 0–24 hours (i.e. juveniles) and 24 hours and more (i.e. adults) were tested for their responses to changes in the direction of the gravitational force while placed on a flat surface gradually tilted between 0.5° and 180°. The tests were run on non-blind and blind hornets, at temperatures ranging between 18°C and 35°C, in daylight as well as in the dark. Up to 18 hours of age, negative phototaxis prevailed among the hornets, which displayed a clear preference for remaining in the dark regardless of the geotropic position. Between 18–24 hours of age, there was gradual appearance of a sensitivity to change in the geotropic position. Above 24 hr of age, the hornets became sensitive to changes in their declinations, with workers becoming sensitive at a 3–5° declination, queens at 4–5° and males at a declination of 8–19° from the horizontal. Hornet response takes the form of an upward climb, to the highest point of the test surface. Such response required a temperature exceeding 24.8–25°C for workers, 23.2°C for queens and 20.8–21°C for males.  相似文献   

17.
Microbial processes in frozen food   总被引:2,自引:0,他引:2  
Deep freezing of food and storage at −19°C is a standard conservation procedure in food technology. The lower limit of growth of bacteria in food is from about −5°C to about −8°C, whereas the reproduction limit of yeasts is 2 to 3°C lower. Storage temperatures above −10°C should therefore not be used. At −18°C, a commonly used storage temperature, no growth of microorganisms will occur. The microorganisms mainly found at the lower growth limit are Pseudomonas sp. and basidiomycete yeasts. The reduction in the number of microorganisms due to freezing, storage, and thawing is not of practical importance. Microbial enzymes, in particular lipases and proteases, are still active at −18°C. Therefore, the quality of raw products and good hygiene at the production site are most important.  相似文献   

18.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

19.
The growth of Penicillium notatum colonies after UV irradiation of dried mycelium or spores was studied in relation to post-irradiation temperature and salt environment. Dried mycelium and spores behaved differently with respect to sensitivity to temperature, salts and UV, especially the latter. Threshold inhibitory doses for spores were modified markedly either at 4°C or in magnesium and calcium chlorides. It is suggested that these temperature and salt effects are related to prevention of photochemical membrane damage.  相似文献   

20.
The differential rotation of the patterns of the large-scale solar magnetic field during solar activity cycles 20 and 21 is investigated. Compact magnetic elements with the polarity of the general solar magnetic field have larger speed of rotation than the elements with the opposite polarity. The surface of the Sun was divided by 10°-zones. In all of them the average rotation rate of the magnetic elements with negative polarity is little higher than that of the magnetic elements with positive polarity, except for 50°-zone of the south hemisphere and at the 10° latitude of the north hemisphere.

The rates of differential rotation for large-scale magnetic elements with negative and positive polarities have similar behavior for both cycles of the solar activity.

The rotation rate varies at polarity reversal of the circumpolar magnetic fields. For the cycle No 20 in 1969–1970 the threefold reversal took place in the northern hemisphere and variations of rotation rate can be noticed for magnetic elements both with positive and negative polarity for each 10°-zone in the same hemisphere.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号