首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control ...  相似文献   

2.
多导弹三维编队控制   总被引:6,自引:0,他引:6  
马培蓓  纪军 《航空学报》2010,31(8):1660-1666
 多导弹编队控制可极大提高多枚导弹协同作战的效能。重点研究了多导弹编队控制涉及的2个主要问题:编队结构问题和三维编队保持控制器设计问题。提出了改进的领弹-跟随弹编队模式,结合多级分布式控制策略,解决了领弹失效时队形无法保持的问题;设计了基于相对误差的三维非线性跟随弹编队控制器,得到相应的跟踪控制律。不管领弹如何机动,跟随弹与领弹的相对距离始终为指定的期望值,同时跟随弹的速度、航向角和滚转角也能与领弹保持一致,通过仿真验证了所设计的编队控制器具有鲁棒性和稳定性。  相似文献   

3.
《中国航空学报》2021,34(2):504-515
This paper investigates a formation control problem of fixed-wing Unmanned Aerial Vehicle (UAV) swarms. A group-based hierarchical architecture is established among the UAVs, which decomposes all the UAVs into several distinct and non-overlapping groups. In each group, the UAVs form hierarchies with one UAV selected as the group leader. All group leaders execute coordinated path following to cooperatively handle the mission process among different groups, and the remaining followers track their direct leaders to achieve the inner-group coordination. More specifically, for a group leader, a virtual target moving along its desired path is assigned for the UAV, and an updating law is proposed to coordinate all the group leaders’ virtual targets; for a follower UAV, the distributed leader-following formation control law is proposed to make the follower’s heading angle coincide with its direct leader, while keeping the desired relative position with respect to its direct leader. The proposed control law guarantees the globally asymptotic stability of the whole closed-loop swarm system under the control input constraints of fixed-wing UAVs. Theoretical proofs and numerical simulations are provided, which corroborate the effectiveness of the proposed method.  相似文献   

4.
《中国航空学报》2020,33(11):2898-2906
This paper develops both adaptive distributed dynamic state feedback control law and adaptive distributed measurement output feedback control law for heterogeneous discrete-time swarm systems with multiple leaders. The convex hull formed by the leaders and the system matrix of leaders is estimated via an adaptive distributed containment observer. Such estimations will feed the followers so that every follower can update the system matrix of the corresponding adaptive distributed containment observer and the system state of their neighbors. The followers cooperate with each other to achieve leader–follower consensus and thus solve the containment control problem over the network. Numerical results demonstrate the effectiveness and computational feasibility of the proposed control laws.  相似文献   

5.
叶结松  龚柏春  李爽  都延丽  郝明瑞 《航空学报》2021,42(7):324610-324610
由多个载体组成的多智能体系统对复杂环境具有更高的适应性,能够完成传统单个载体无法完成的任务。针对多智能体编队集结与队形移动跟踪问题,提出了一种改进的多智能体编队协同控制新算法。首先,以拒止环境下跟随智能体仅能通过光学传感器测量相对方位信息为任务背景,针对"领导者——第一跟随者"结构的多智能体编队,提出了基于相对方位信息与单间距测量的控制器,使得第一跟随者智能体可以追随移动的领导者智能体,并且可以通过改变与领导者智能体的间距对编队整体队形进行缩放控制。其次,提出一种了改进的分布式控制律,使得其他跟随者智能体可以仅通过两个相对方位信息完成编队飞行。然后,根据Lyapunov第二方法,构建了系统的能量函数,验证了所提出算法的稳定性。最后,通过数值仿真实验对所提算法进行了验证。仿真结果表明,基于该控制律多智能体系统能够完成编队集结、队形缩放和编队飞行的任务。  相似文献   

6.
针对具有非完整约束的多无人机系统编队控制问题,提出了一种基于滑模的协同编队控制算法。控制目标是使多无人机系统能够收敛到期望编队,并且能够跟踪上期望的运动轨迹。在领导-跟随结构中,编队的期望运动轨迹由一个动态的虚拟领导者来表示,仅部分跟随者先验已知虚拟领导者信息,并且所有跟随者之间只能局部交互信息。首先,采用分布式状态观测器,使所有跟随者能够在有限时间内估计出虚拟领导者的状态。然后,利用该观测器的估计状态,提出了基于滑模的协同编队控制算法。最后,基于李雅普诺夫稳定性理论证明了多无人机系统的稳定性,并且通过5架无人机的仿真验证了所提算法的有效性。  相似文献   

7.
王晶  顾维博  窦立亚 《航空学报》2020,41(z1):723758-723758
针对四旋翼无人机(UAV)群在轨迹跟踪过程中易受外界干扰而引起跟踪误差的问题,设计了基于Leader-Follower的多无人机协同编队轨迹跟踪控制方法。在该系统中,首先通过积分反步法(IBS)对所建四旋翼飞行器模型设计Leader无人机的轨迹跟踪控制器。其次设计了滑模控制(SMC)器,以控制Leader与Follower无人机实现期望的编队队形并同时跟踪参考轨迹。然后通过数值仿真验证了算法的有效性,仿真结果表明,系统具有良好的控制精度。最后通过视觉定位系统进行实验,结果表明所设计的控制器能够实现多个无人机轨迹跟踪和编队控制,所设计的算法具有可行性。  相似文献   

8.
《中国航空学报》2021,34(4):293-305
This paper addresses the challenge of synchronized multiple spacecraft attitude reorientation in presence of pointing and boundary constraints with limited inter-spacecraft communication link. Relative attitude pointing constraint among the fleet of spacecraft has also been modeled and considered during the attitude maneuvers toward the desired states. Formation fling control structure that consists of decentralized path planners based on virtual structure approach joint with discrete time optimal local controller is designed to achieve the mission’s goals. Due to digital computing of spacecraft’s onboard computer, local optimal controller based on discrete time prediction and correction algorithm has been utilized. The time step of local optimal algorithm execution is designed so that the spacecraft track their desired attitudes with appropriate error bound. The convergence of the proposed architecture and stability of local controller’s tracking error within appropriate upper bound are proved. Finally, a numerical simulation of a stereo imaging scenario is presented to verify the performance of the proposed architecture and the effectiveness of the algorithm.  相似文献   

9.
In this paper, we consider the coordinated attitude control problem of spacecraft formation with communication delays, model and disturbance uncertainties, and propose novel synchronized control schemes. Since the attitude motion is essential in non-Euclidean space, thus, unlike the existing designs which describe the delayed relative attitude via linear algorithm, we treat the attitude error and the local relative attitude on the nonlinear manifold-Lie group, and attempt to obtain coupling attitude information by the natural quaternion multiplication. Our main focus is to address two problems:1) Propose a coordinated attitude controller to achieve the synchronized attitude maneuver, i.e., synchronize multiple spacecraft attitudes and track a time-varying desired attitude; 2) With known model information, we achieve the synchronized attitude maneuver with disturbances under angular velocity constraints. Especially, if the formation does not have any uncertainties, the designer can simply set the controller via an appropriate choice of control gains to avoid system actuator saturation. Our controllers are proposed based on the Lyapunov-Krasovskii method and simulation of a spacecraft formation is conducted to demonstrate the effectiveness of theoretical results.  相似文献   

10.
Space swarms, enabled by the miniaturization of spacecraft, have the potential capability to lower costs, increase efficiencies, and broaden the horizons of space missions. The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered. The objective is to drive the entire formation to produce a specified spatial pattern. The relative motion between agents becomes complicated as the number of agents increases. Hence, a density-based method is adopted...  相似文献   

11.
This paper proposes a new distributed coordinated control scheme based on heterogeneous roles for Unmanned Aerial Vehicle(UAV) swarm to achieve formation control. First, the framework of the distributed coordinated control scheme is designed on the basis of Distributed Model Predictive Control(DMPC). Then, the effect of heterogeneous roles including leader, coordinator and follower is discussed, and the role-based cost functions are developed to improve the performance of coordinated control for...  相似文献   

12.
周思全  董希旺  李清东  任章 《航空学报》2020,41(z1):723767-723767
研究了无人机-无人车异构系统时变输出编队控制与扰动抑制问题,要求多无人机与无人车在受到未知外部扰动的情况下,保持设计的输出时变编队构型。首先,对无人机与无人车进行单体运动学与动力学建模,同时建立扰动模型,并引入代数图论概念,建立异构集群系统的协同控制模型。然后,对各无人机-无人车设计了具有分层架构的分布式时变输出编队控制器,包含基于一致性理论的编队中心估计项和基于内模原理的扰动抑制补偿项。进一步分析异构系统实现输出时变编队的可行性条件,给出了分布式编队控制器的参数选取算法,并证明了时变编队控制器构成的闭环系统的稳定性。最后,通过仿真算例来验证所设计的编队控制器的有效性。  相似文献   

13.
高岱  吕建婷  王本利 《航空学报》2012,33(11):2074-2081
研究在角速度不可测时航天器的有限时间姿态控制问题。基于有限时间控制技术,提出了由修正Rodrigues参数进行姿态描述的航天器输出反馈姿态控制算法。首先设计了单个航天器的输出反馈姿态控制器,在没有角速度反馈时也能够保证航天器姿态在有限时间内调节到期望姿态。之后,设计了无需绝对角速度和相对角速度信息的多航天器分布式输出反馈姿态控制器。使用Lyapunov理论和图论,对闭环系统全局有限时间稳定性进行了严格的证明。最后对提出的控制算法进行了数值仿真,其结果验证了所设计的航天器输出反馈控制算法的可行性和有效性。  相似文献   

14.
In this paper, the flight formation control problem of a group of quadrotor unmanned aerial vehicles (UAVs) with parametric uncertainties and external disturbances is studied. Unit-quaternions are used to represent the attitudes of the quadrotor UAVs. Separating the model into a translational subsystem and a rotational subsystem, an intermediary control input is introduced to track a desired velocity and extract desired orientations. Then considering the internal parametric uncertainties and external disturbances of the quadrotor UAVs, the priori-bounded intermediary adaptive control input is designed for velocity tracking and formation keeping, by which the bounded control thrust and the desired orientation can be extracted. Thereafter, an adaptive con-trol torque input is designed for the rotational subsystem to track the desired orientation. With the proposed control scheme, the desired velocity is tracked and a desired formation shape is built up. Global stability of the closed-loop system is proven via Lyapunov-based stability analysis. Numer-ical simulation results are presented to illustrate the effectiveness of the proposed control scheme.  相似文献   

15.
基于分布式自适应的多智能体容错一致性控制   总被引:1,自引:1,他引:0  
张普  薛惠锋  高山 《航空学报》2020,41(3):323539-323539
针对"领航者-跟随者"的多智能体编队,由于领航者系统出现故障引起编队通讯中断而不能完成任务的问题,提出了一种基于一致性理论的分布式自适应控制方法,用于解决该问题。首先,以一个位于顶点的智能体作为领航者,其余3个位于同一条线上的智能体作为跟随者,由此所构成的三角形编队作为被控对象。其中,领航者速度方向作为编队的前行方向,跟随者位于领航者之后。其次,基于图论,对智能体局部信息参数进行分布式自适应更新,并设计分布式自适应控制律,用于弥补多智能体编队中领航者故障所造成的影响。同时,根据相邻智能体的局部信息,设计整体分布式自适应容错控制律,进一步通过构建合理的Lyapunov函数,证明所设计控制器的稳定性,以及"领航者-跟随者"之间相对横向以及相对纵向的距离误差均收敛于固定常数。最后,仿真验证表明:所提出的自适应控制方法具有良好的鲁棒性,这也为工程实践提供了理论依据。  相似文献   

16.
《中国航空学报》2022,35(9):268-281
This paper addresses a coordinated control problem for Spacecraft Formation Flying (SFF). The distributed followers are required to track and synchronize with the leader spacecraft. By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated three-dimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.  相似文献   

17.
《中国航空学报》2021,34(3):176-186
This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment. First, an integral-type sliding mode adaptive control law is designed to compensate the effects of flexible mode, environmental disturbance and actuator installation deviation. The basic idea of the Integral-type Sliding Mode Control (ISMC) is to design a proper sliding manifold so that the sliding mode starts from the initial time instant, and thus the robustness of the system can be guaranteed from the beginning of the process and the reaching phase is eliminated. Then, considering the nominal system of spacecraft formation based on directed topology, an attitude cooperative control strategy is developed for the nominal system with or without communication delay. The proposed control law can guarantee that for each spacecraft in the spacecraft formation, the desired attitude objective can be achieved and the attitude synchronization can be maintained with other spacecraft in the formation. Finally, simulation results are given to show the effectiveness of the proposed control algorithm.  相似文献   

18.
《中国航空学报》2020,33(11):2959-2971
This paper is concerned with distributed containment maneuvering of second-order Multi-Input Multi-Output (MIMO) multi-agent systems with non-periodic communication and actuation. The agent is subject to unmatched nonlinear dynamics and external disturbances. Event-triggered containment maneuvering control methods is developed based on a modular design. Specifically, an estimator module is constructed based on neural networks and the non-periodic obtained follower information through event-triggered communication. Next, a controller module is designed by using the identified information from the estimator module and a third-order linear tracking differentiator. An event-triggered mechanism is introduced for updating the actuator. Then, a path update law is designed based on the non-periodic leader information through event-triggered communication. The closed-loop system cascaded by the estimation subsystem and control subsystem is proved to be input-to-state stable, and Zeno behavior is excluded in the control process. The proposed method is capable of reducing the consumption of communication and actuation. A simulation example is provided to substantiate the effectiveness of the proposed event-triggered control method for distributed containment maneuvering of second-order MIMO multi-agent systems.  相似文献   

19.
In this paper, formation tracking control problems for second-order multi-agent systems (MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to form a time-varying formation while tracking those of the leader. A neigh-boring relative state information based formation tracking protocol with an unknown gain matrix and time-varying delays is presented. The formation tracking problems are then transformed into asymptotically stable problems. Based on the Lyapunov-Krasovskii functional approach, condi-tions sufficient for second-order MASs with time-varying delays to realize formation tracking are examined. An approach to obtain the unknown gain matrix is given and, since neighboring relative velocity information is difficult to measure in practical applications, a formation tracking protocol with time-varying delays using only neighboring relative position information is introduced. The proposed results can be used on target enclosing problems for MASs with second-order dynamics and time-varying delays. An application for target enclosing by multiple unmanned aerial vehicles (UAVs) is given to demonstrate the feasibility of theoretical results.  相似文献   

20.
《中国航空学报》2019,32(12):2679-2693
This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods, the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design, the controllers can be used to track different time-varying target formation patterns. Besides, multi-layer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号