首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper gives a review of the recent high-resolution H observations of solar flares and flare-productive active regions. From studies of the morphological and evolutional features of H flare emitting regions, two types of two-ribbon flares, which are termed separating two-ribbon flare and confined two-ribbon flare, are discussed. The former is characterized by conspicuous separating motions or expanding motions of the H two ribbons, whereas the latter shows only a short range of or no separating motions of the two ribbons. The explosive compact flares, which occur in some compact newly-emerging flux regions, are also discussed.Attention is paid to the successive and impulsive brightenings of H flare points which form the H flare kernels and the front lines of H two ribbons at the impulsive phases of flares. Temporal relationships between H line intensities or profiles and hard X-ray or microwave emissions are discussed to discriminate the energy transport mechanisms in the flare loops.H monochromatic image of high spatial resolution, at the present time, is the most sensitive detector for finding the first appearance of newly-emerging magnetic flux region and the developing features of sheared configuration of magnetic field, both of which are the key factors in flare energy build-up processes. It is suggested that the successive emergence of a twisted magnetic flux rope might be essential for the production of a major flare.Contributions from the Kwasan and Hida Observatories, Kyoto University, No. 292.  相似文献   

2.
Measurements of the intensities and profiles of UV and EUV spectral lines can provide a powerful tool for probing the physical conditions in the solar corona out to 8 R and beyond. We discuss here how measurements of spectral line radiation in conjunction with measurements of the white light K-corona can provide information on electron, proton and ion temperatures and velocity distribution functions; densities; chemical abundances and mass flow velocities. Because of the fundamental importance of such information, we provide a comprehensive review of the formation of coronal resonance line radiation, with particular emphasis on the H i L line, and discuss observational considerations such as requirements for rejection of stray light and effects of emission from the geocorona and interplanetary dust. Finally, we summarize some results of coronal H i L and white light observations acquired on sounding rocket flights.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

3.
The solar wind carves a cavity in the flow of interstellar H atoms through the solar system by charge-exchange ionization. The resulting Ly- sky pattern depends on the latitude distribution of the solar wind flux and velocity. We review how the solar wind characteristics (mass flux latitude distribution) can be retrieved from Ly- observations, yielding a new remote sensing method of solar wind studies, through UV optical measurements.  相似文献   

4.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

5.
An overview of the solar wind termination shock is presented including: its place in the heliosphere and its origin; its structure including the role of interstellar pickup ions and galactic and anomalous cosmic rays; its inferred location based on Lyman- backscatter, Voyager radio signals, and anomalous cosmic rays; its shape and movement.  相似文献   

6.
The experiments pertaining to the excitations of Lyman- radiation in the night sky are reviewed. Various possible modes of excitation are considered. Scattering of solar L in interplanetary hydrogen is not suitable because of an insufficient amount of hydrogen and difficulty in accounting for the large night time albedo contrasted with the small daytime value. Transport by multiple scattering in the exosphere produces an appreciable excitation as well as the correct variation of intensity as function of zenith angle. However, the process fails by a factor of 4 for a solar flux of 6 ergs/cm2 sec and the 3 × 1012 atoms/cm2 geocorona consistent with absorption measurements. A direct scattering in a geocoma far from the earth overcomes the albedo and thin atmosphere problems. However, there is difficulty in accounting for the presence of the amount of hydrogen necessary beyond 15 earth radii. Also the absence of H excitation by Lyman- is a problem. No explanation so far proposed appears adequate. Experiments are suggested.  相似文献   

7.
Wibberenz  G.  le Roux  J.A.  Potgieter  M.S.  Bieber  J.W. 《Space Science Reviews》1998,83(1-2):309-348
In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on— phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere— the present state of models for long term modulation and their shortcomings— the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)— charge dependent effects.In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result 1/ between the diffusion coefficient and the field magnitude . This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient fromfirst principles. The three articles in this report essentially follow the list of open points and arguments just presented.The article "Observations and Simple Models" is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. Acomparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.The "Modeling of Merged Interaction Regions" summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The com-bination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.The "Remarks on the Diffusion Tensor in the Heliosphere" describe available theories of perpen-dicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the "Diffusion Tensor throughout the Heliosphere" which played an important role in all working groups.  相似文献   

8.
We propose a technique to derive the coronal density irregularity factor , wheren is the electron density. The absolute photometric comparison between the intensity of UV lines and the white-light K-coronal polarized brightness (pB) provides an unique constraint on the inhomogeneity of the corona. The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisonal component of the Ly-. This component yields an estimate of . The quantity is then obtained from white-light K-coronal measurements. The use of lines of the same atomic species minimizes the effects due to outflow velocities (i.e., Doppler dimming), and reduces the errors introduced by the uncertainties in the ionization balance, the atomic parameters, and the solar abundances. The UVCS/SOHO unique capability of performing cotemporal and cospatial measurements of the Ly- and Ly- lines, and ofpB makes this instrument ideal for implementing this technique.  相似文献   

9.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

10.
Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman- absorption toward nearby stars allow us to identify systematic errors that have plagued earlier work and to measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through the Local Interstellar Cloud leads to a mean value of D/H = (1.50 ± 0.10) × 10-5 with all data points lying within ± 1 of the mean. Whether or not the D/H ratio has different values elsewhere in the Galaxy and beyond is a very important open question that will be one of the major objectives of the Far Ultraviolet Spectroscopic Explorer (FUSE) mission.  相似文献   

11.
More than 1000 coronal mass ejections (CMEs) caused by different types of coronal transients have been analyzed up to now, based on the images from white light coronagraphs on board the OSO 7, Skylab, P78-1, and SMM spacecraft. In many cases, the CME images lead us to the impression of loop-like, more planar structures, similar to those of prominence structures often seen in H pictures. There is increasing evidence, though, for a three-dimensional bubble- or cloud-like structure of CMEs. In several cases, CMEs directed toward the earth (or away from it) were identified, as their outer fronts emerged on all sides of the coronagraph's occulting disk, thus suggesting a bubble-like appearance.There now appears to be unanimity about the crucial role that magnetic reconnection plays during the transient process. Recently, direct evidence was found for the pinch-off of CMEs, both from optical observations and from in situ measurements of isolated magnetic clouds' following transient shock waves. However, the detailed sequence of events during the generation of a CME is still unclear.Interplanetary shock waves associated with the CMEs are usually restricted in latitudinal extent to about the angular width of the optically observed CMEs. They may be somewhat less restricted in longitudinal extent. A nearly 1 1 association between CMEs and shock waves measured in situ from spacecraft (Helios 1 and 2, IMP 7 and 8, ISEE 3, Pioneer Venus) can be established, provided the CME and the spacecraft were in the same longitudinal and latitudinal range and the CME speed exceeds 400 km s–1. Around the past solar activity minimum all CMEs observed were centered at solar latitudes of less than 60°. Around solar maximum, a significant fraction of CMEs also originated from the polar regions. Thus, there is a good chance that the Ulysses spaceprobe will encounter many shocks caused by both low- and high-latitude CMEs, when it finally starts its journey over the Sun's poles.  相似文献   

12.
This article reviews theories and observations related to effects produced by finite (and large) Larmor radii of charged particles in the magnetosphere. The FLR effects depend on =r H /L, wherer H is the Larmor radius andL is the spatial scale for field/plasma inhomogeneity. The parameter is a basic expansion parameter for most equations describing plasma dynamics in the magnetosphere. The FLR effects enter naturally the drift approximation for particle motion and represent also non-ideal MHD terms in the fluid formalism. The linear and higher order terms in lead to charge separation, energization of particles, and produce viscosity without collisions. The FLR effects introduce also important corrections to the dispersion relations for MHD waves and drift instabilities. Expansion of plasma into magnetic field leads to filamentation of the plasma boundary and to creation of structures with thickness less than an ion gyroradius. Large Larmor radius effects (1) in curved magnetic field geometry lead to stochastic behaviour of particle trajectories and to deterministic chaos. The tiny scale of the electron and ion gyroradii does not necessarily mean that FLR/LLR phenomena have negligible effect on the macroscopic dynamics and energetics of the whole magnetosphere. On the contrary, the small scale gyro-effects may provide the physical mechanism for gyroviscous coupling between the solar wind and the magnetosphere, the mechanism for triggering disruption of the magnetotail current layer, and the mechanism for parallel electric field that accelerate auroral particles.  相似文献   

13.
Spartan 201 is a shuttle deployed spacecraft that is scheduled to perform ultraviolet spectroscopy and white light polarimetry of the extended solar corona during two 40 hour missions to occur in September 1994 and August 1995. The spectroscopy is done with an ultraviolet coronal spectrometer which measures the intensity and spectral line profile of HI Ly up to heliocentric heights of 3.5 solar radii. It also measures the intensities of the OVI doublet at 1032 and 1037 Å and of Fe XII at 1242 Å. The HI Ly line profile measurements are used to determine the random velocity distribution of coronal protons along the line-of-sight. The absolute HI Ly intensities can be used together with electron densities from the white light coronagraph to estimate electron temperatures from hydrogen ionization balance calculations, and bulk outflow velocities from models of Doppler dimmed resonant scattering. Intensities of minor ion lines are used to determine coronal abundances and outflow velocities of O5+. Ultraviolet spectroscopy of extended coronal regions from the 11 April 1993 mission of Spartan 201 are discussed.  相似文献   

14.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

15.
    
A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 . Solar observations of especial value for the investigation of the 300–400 region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded.Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

16.
This work is concerned with binary systems that we call moderately close. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore moderately close. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical moderately close Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   

17.
The Coronal Helium Abundance Spacelab Experiment, (CHASE), basically consists of a grazing incidence telescope and spectrometer sensitive over the range 150–1335 Å. Whilst aimed primarily at deriving the solar helium abundance from measurements of coronal resonance scattering, its specification has been extended in order to provide a more general purpose solar XUV facility. The instrument will be flown on the Spacelab 2 Mission, currently scheduled for launch in November 1984.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

18.
Measurements of the shape of the ultraviolet spectrum from B stars are compared with the theoretical spectra predicted from a homogeneous series of eight model atmospheres which are known to be close to a state of radiative equilibrium and to give a good representation of the ordinarily observed spectral region. The broad-band photometer measurements of Byram, Chubb, and Friedman in the region 1314 indicate that the stars become brighter in the ultraviolet as their temperature increases. The theoretical spectra reproduce this trend. However, the theoretical spectra are about three times as bright at 1314 relative to their brightness at 5560 as is observed.The spectral observations at 50Å resolution of Stecher and Milligan of six absorption-line stars are compared in detail with theoretical spectra. The observed shape of the spectrum is reproduced well by the models from 2600 to longer wavelengths. At wavelengths shorter than 2600 Å, the observed fluxes from B stars are less than the predicted fluxes. At 2000 the deficiency is between a factor two and a factor four. The spectrum of Canis Majoris is observed to have a different shape from that found for four other early-type stars. In the case of Canis Majoris the deficiency at 2000 is about a factor 13.The proper manner in which to compare theory and observation is discussed and some astrophysical terminology is explained. Theoretical fluxes, , are given in Table 1 for eight early B type model atmospheres at wavelengths between the Lyman limit and 6251. These fluxes have been computed without consideration of the opacity due to line blanketing. It is shown that line blanketing can probably account for the differences noted between predicted and observed ultra-violet spectra of B stars. It is not necessary at present to invoke unusual sources of opacity in the stellar atmosphere or in the space between the star and the earth in order to explain the observations. Spectra of B stars in the 2000 region at sufficient resolution to show the line spectrum would clarify the problem.  相似文献   

19.
    
The circumstellar plasma that produces H emission in Algol binaries has been investigated using phase-resolved, high dispersion data acquired from CCD and image tube detectors. Results are summarized in this paper, including discussions of the disk geometry and size, asymmetry in the distribution of material, long-term or non-phase dependent variability, mass outflow, the mean electron density, and how the latter properties vary with the system's period or location in the r-q diagram. Five systems which display permanent emission with periods ranging from 4.5 to 261 days (SW Cyg, UX Mon, TT Hya, AD Her, and RZ Oph) are intercompared. If P < 4.5 days, no permanent disks are observed, while if P > 6 days, stable disks with only slight long-term variations in their H brightness are seen. The most variable systems appear to be those in the 5 – 6 day range, but the star's position in the r-q diagram has the largest influence on its behavior. The trailing side of the accretion disk, where the gas stream impacts the inner disk, is usually brighter, and the leading side is often times more extended. The disk extends out to at least 95% of the Roche surface of the primary and is highly flattened (RP). Mass outflow near phase 0.5 is commonplace.  相似文献   

20.
The instruments on the Spartan 201 spacecraft are an Ultraviolet Coronal Spectrometer and a White Light Coronagraph. Spartan 201 was deployed by the Space Shuttle on 11 April 1993 and observed the extended solar corona for about 40 hours. The Ultraviolet Coronal Spectrometer measured the intensity and spectral line profile of HI Ly and the intensities of OVI 103.2 and 103.7 nm. Observations were made at heliocentric heights between 1.39 and 3.5 R. Four coronal targets were observed, a helmet streamer at heliographic position angle 135°, the north and south polar coronal holes, and an active region above the west limb. Measurements of the HI Ly geocorona and the solar irradiance were also made. The instrument performed as expected. Straylight suppression, spectral focus, radiometric sensitivity and background levels all appear to be satisfactory. The uv observations are aimed at determining proton temperatures and outflow velocities of hydrogen, protons and oxygen ions. Preliminary results from the north polar coronal hole observations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号