首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.  相似文献   

2.
Mars Global Surveyor (MGS) recently obtained coordinated lower-atmosphere (thermal and dust) measurements and simultaneous upper atmosphere accelerometer data (densities, scale heights and temperatures) for the purpose of safely aerobraking the spacecraft toward its mapping orbit (Keating et al. 1998). Much useful scientific information was also gleaned that describes the coupling of these atmospheric regions during this Phase I aerobraking period (September 1997–March 1998; Ls = 184–300). The major features of this aerobraking data are presented, and its trends elucidated in order to: (1) illustrate the aerobraking environment experienced by the spacecraft, and (2) decompose the processes responsible for the atmospheric variations observed. Coupled general circulation models of the Mars lower and upper atmospheres are exercised to investigate the solar-orbital, seasonal, wave, and dust variations observed during MGS aerobraking. The precession of the MGS periapsis position during Phase I permits longitudinal, latitudinal, local time, and vertical variations of the thermosphere to be monitored. Future aerobraking activities at Mars will benefit greatly from this MGS aerobraking data and its model interpretation.  相似文献   

3.
An improvement to the Martian gravity field may be achieved by means of future orbiting spacecraft with small eccentricity and low altitude exemplified through a newly proposed mission design that may be tested in upcoming reconnaissance of Mars. Here, the near equatorial orbital character (with an inclination approximating 10°, eccentricity as 0.01 and semi-major axis as 4000 km) is considered, and its contribution to Martian gravity field solution is analyzed by comparing it with a hypothetical polar circular orbiter. The solution models are evaluated in terms of the following viewpoints: power spectra of gravity field coefficients, correlations of low degree zonal coefficients, precise orbit determination, and error distribution of both Mars free air gravity anomaly and areoid. At the same time, the contributions of the near equatorial orbiters in low degree zonal coefficients time variations are also considered. The present results show that the near equatorial orbiter allows us to improve the accuracy of the Martian gravity field solution, decrease correlation of low degree zonal coefficients, retrieve much better time variable information of low degree zonal coefficients, improve precise orbit determination, and provide more accurate Mars free air gravity anomaly and areoid around the equatorial region.  相似文献   

4.
We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ∼330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit. The two spacecraft are stacked for launch: an orbiter for remote investigation of the moons and in situ studies of their environment in Mars orbit, and another carrying a lander for in situ measurements on the surface of Phobos (or alternatively Deimos). Phobos and Deimos remain only partially studied, and Deimos less well than Phobos. Mars has almost always been the primary mission objective, while the more dedicated Phobos project (1988–89) failed to realise its full potential. Many questions remain concerning the moons’ origins, evolution, physical nature and composition. Current missions, such as Mars Express, are extending our knowledge of Phobos in some areas but largely neglect Deimos. The objectives of M-PADS focus on: origins and evolution, interactions with Mars, volatiles and interiors, surface features, and differences. The consequent measurement requirements imply both landed and remote sensing payloads. M-PADS is expected to accommodate a 60 kg orbital payload and a 16 kg lander payload. M-PADS resulted from a BNSC-funded study carried out in 2003 to define candidate Mars Micro Mission concepts for ESA’s Aurora programme.  相似文献   

5.
A mission to Mars and small solar system bodies is presently studied as a possible collaboration between INTERCOSMOS, CNES, ESA and eventually other participants. The VESTA concept, based on the same strategy as the successful VEGA mission, is more ambitious, as two spacecrafts separate soon after launch: a soviet spacecraft, dedicated to the study of Mars, and a spacecraft dedicated to the study of small bodies, under the responsibility of CNES and ESA. This spacecraft would use Mars gravity assists to visit up to 4 small bodies in less than 5 years. The mission is duplicated, which means that up to 8 small bodies could be studied (e.g. 6 main belt asteroids, 1 apollo-amor asteroid and 1 short period comet). Low relative velocities (< 3.5 km/s) should allow to drop a penetrator on two large main belt asteroids, such as 4 Vesta and 1 Ceres (1994 launch).  相似文献   

6.
China's first Mars exploration mission is scheduled to be launched in 2020. It aims not only to conduct global and comprehensive exploration of Mars by use of an orbiter but also to carry out in situ observation of key sites on Mars with a rover. This mission focuses on the following studies:topography, geomorphology, geological structure, soil characteristics, water-ice distribution, material composition, atmosphere and ionosphere, surface climate, environmental characteristics, Mars internal structure, and Martian magnetic field. It is comprised of an orbiter, a lander, and a rover equipped with 13 scientific payloads. This article will give an introduction to the mission including mission plan, scientific objectives, scientific payloads, and its recent development progress.   相似文献   

7.
损耗大气中随机重力波场的传输方程   总被引:3,自引:0,他引:3  
易帆  肖佐 《空间科学学报》1993,13(4):278-285
从包含分子粘性的非线性相互作用方程出发, 采用随机相位近似, 推导了损耗大气中重力波场的非线性传输方程。由于分子损耗的引入, 谱演变的速率发生了改变, 在某些情况下, 还会得到与无耗条件下的传输规律相反的结论。损耗大气中重力波场的传输方程是研究中高层大气重力波能量收支平衡的出发点。   相似文献   

8.
The primordial Mars may have possessed a thick carbon dioxide atmosphere, with liquid water common on the surface, similar in many ways to the primordial Earth. During this epoch, billions of years ago, the surface of Mars could have been conducive to the origin of life. It is possible that life evolved on Mars to be later eliminated as the atmospheric pressure dropped. Analysis of the surface of Mars for the traces of this early martian biota could provide many insights into the phenomenon of life and its coupling to planetary evolution.  相似文献   

9.
PLANET-B is the Japanese Mars orbiter program. The primary objective of the program is to study the Martian aeronomy, putting emphasis on the interaction of the Martian upper atmosphere with the solar wind. The launch of the spacecraft is scheduled for August, 1998. The periapsis altitude and the apoapsis are 150 km and 15 Mars radii, respectively. The dry weight of the orbiter is 186 kg including 14 science instruments. Advanced technologies are employed in the design of the spacecraft in order to overcome the weight limitation. This paper describes the scientific objectives of the PLANET-B program and outline of the spacecraft system.  相似文献   

10.
Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust “cycle” have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS + impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.  相似文献   

11.
The ion density and magnetic field data from the Pioneer Venus Orbiter for the first three dayside periapsis passes have been analysed to study the effect of the large-scale fields upon the dayside ion density profiles. The peak value of the O+ density in a strongly magnetised ionosphere often shows an enhancement as compared to a close non-magnetic orbit. Further, the height of the O+ peak shows a positive correlation with the height of the minimum of the magnetic field profile. Contrary to earlier findings, the compressional effects of the magnetic fields are observed even at near-terminator locations.  相似文献   

12.
1984年2月18日耀斑后环速度场的分析   总被引:2,自引:0,他引:2  
本文研究了耀斑后环内物质在太阳重力、磁压力梯度和气体压力梯度联合作用下的下落运动,并在非等温状态及定常假定下计算了环内物质分布。计算结果表明:在环的中上部,下落运动可当作太阳重力作用下的自由下落运动;在环的底部,环内物质密度和磁场强度对物质下落运动影响较显着。   相似文献   

13.
火星空间环境磁场探测研究——高精度磁强计   总被引:2,自引:0,他引:2  
萤火一号卫星将对火星空间环境磁场实施探测。火星磁场对火星弓激波、磁鞘、电离层、大气等绝大多数空间环境效应都具有重要影响,萤火一号对火星磁场的探测是通过搭载于其上的科学载荷磁强计来实现的。此磁强计在工作原理及具体设计上,考虑了火星轨道严酷的工作环境和科学目标所需的测量要求。通过装星前的地面标定测试,验证了萤火一号磁强计可以在-130~75℃温度范围内测量±256nT以内的磁场,分辨率可达到0.01 nT,带宽内总噪声小于0.03 nT,能够满足萤火一号对火星空间环境探测的需求。  相似文献   

14.
The Earth’s gravity field can be measured with high precision by constructing the purely gravitational orbit of the inner-satellite in Inner-formation Flying System (IFS), which is independently proposed by Chinese scholars and offers a new way to carry out gravity field measurement by satellite without accelerometers. In IFS, for the purpose of quickly evaluating the highest degree of recovered gravity field model and geoid error as well as analyzing the influence of system parameters on gravity field measurement, an analytical formula was established by spectral analysis method. The formula can reflect the analytical relationship between gravity field measurement performance and system parameters such as orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and total measurement time. This analytical formula was then corrected by four factors introduced from numerical simulation of IFS gravity field measurement. By comparing computation results from corrected analytical formula and the actual gravity field measurement performance by CHAMP, the correctness and rationality of this analytical formula were verified. Based on this analytical formula, the influences of system parameters on IFS gravity field measurement were analyzed. It is known that gravity field measurement performance is a monotone decreasing function of orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and the reciprocal of total measurement time. There is a match relationship between the inner-satellite orbit determination error and residual disturbances, in other words, the change rate of gravity field measurement performance with one of them is seriously restricted by their relative size. The analytical formula can be used to quantitatively evaluate gravity field measurement performance fast and design IFS parameters optimally. It is noted that the analytical formula and corresponding conclusions are applied to any gravity satellite which measures gravity field by satellite perturbation orbit.  相似文献   

15.
The magnetometer on Venus Express was designed to be able to obtain 128 Hz samples of the magnetic field from two sensors in a gradiometer configuration. This mode is used around periapsis to determine whether the signals reported at low altitudes near 100 Hz, had the properties of electromagnetic waves generated by electric discharges in the Venus atmosphere. The lack of a magnetic cleanliness program and the shortness of the magnetometer boom make this a challenging measurement. Fortunately the signals are sufficiently strong that they can be easily resolved with rather straightforward analysis techniques.  相似文献   

16.
金星火山和气候探测任务(Venus Volcano Imaging and Climate Explorer,VOICE)聚焦金星火山与热演化历史、水与板块运动、内部结构和动力学、气候演化和生命信息探索等重大科学问题,提出采用极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR) 、下视与临边结合的微波辐射探测仪(Microwave Radiometric Sounder,MWRS)和紫外–可见–近红外多光谱成像仪(Ultraviolet-Visible-Near Infrared Multispectral Imager,UVN-MSI)等三个先进的有效载荷,在350 km圆轨道上对金星全球表面和大气联合探测。 PolSAR将对金星全球表面进行高分辨多极化雷达成像;MWRS将对金星全球云下大气的热力结构和化学组成,云中可能的宜居环境及与生命相关大气成分进行探测;UVN-MSI则实现大气全貌成像、表面光谱成像和闪电检测。通过多种先进探测载荷和技术手段的结合,VOICE任务将揭示金星构造热演化历史和超温室效应机理,探索其宜居性和生命信息。VOICE任务的实施将实现国际金星研究探索中许多“零”的突破,为理解行星宜居性和太阳系演化提供极为关键的观测支持,对提升中国在国际深空探测与空间科学研究中的地位产生重大影响。   相似文献   

17.
This paper presents the scientific objectives of the Solar Physics and Interferometry Mission (SPI), describes succinctly the model payload and summarizes mission's issues. Novel instrumentation (interferometry) and clever mission design (small platform on low orbit with high telemetry and dedicated smaller platform on hexapod for permanently Sun-centered instruments) allow both spectral imaging and Helioseismology at very high spatial and temporal resolutions. Although not retained by ESA, this mission could become reality through NASA MIDEX and/or CNES PROTEUS opportunities as soon as 2007–2008.  相似文献   

18.
火星空间磁场结构特征   总被引:1,自引:0,他引:1  
在火星空间模拟的单流体MHD模型的基础上, 研究了火星空间磁场结构及火星表面局部磁异常对磁场结构的影响. 在太阳风与火星相互作用的过程中, 形成弓激波和磁堆积区, 行星际磁场弯曲并向两极移动且被拖拽变形, 大部分磁力线从火星两极绕过, 通过火星之后在磁尾留下V字形结构. 火星表面附近局部磁异常也对火星磁场结构产生不可忽视的影响. 不同位置和强度的磁异常与太阳风相互作用形成结构及形态各异的微磁层, 如被拖拽的微磁层和存在开磁力线的微磁层等. 局部磁异常改变了近火磁场结构, 并可能改变等离子体的分布.   相似文献   

19.
In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10?s averaged Doppler tracking pass residuals is approximately 0.39?mm/s; and the average of the laser tracking pass residuals becomes 1.42?cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25?cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of ?0.15 to +0.15?mm/s.  相似文献   

20.
Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号