首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 104 毫秒
1.
Udimet 720 Li材料B-P型粘塑性本构建模研究   总被引:4,自引:0,他引:4  
针对航空发动机用涡轮盘材料Udimet 720 Li,根据高温单轴实验结果,对其在各种载荷条件下的力学行为,开展了采用Bodner-Partom(B-P)统一型弹-粘塑性本构方程进行建模的研究.充分讨论了基于内变量理论的该型本构模型对率相关拉伸、循环硬化及蠕变等力学行为同时进行建模的能力;根据对模型的本构分析,给出了一种分类加整体考虑的模型参数优化策略.通过ABAQUS用户子程序,把该模型结合进了有限元方法,并进行了计算验证.研究表明B-P本构模型可较好地建模高温镍基合金Udimet 720 Li的各种力学行为.   相似文献   

2.
Udimet 720 Li 高温变形特性的粘塑性本构建模研究   总被引:4,自引:0,他引:4  
采用Chaboche统一粘塑性本构方程,对Udimet 720 Li在700℃时的单调拉伸、循环加载及蠕变特性等复杂的高温变形现象进行了建模研究.探讨了Chaboche本构理论对这些变形现象进行建模的形式,并特别针对快速各向同性软化和非对称循环加载时的平均应力松弛现象,对Chaboche本构理论进行了修正和变化.将经过修正的Chaboche本构理论,与Levenberg-Marquadt非线性优化算法相结合,编制了材料参数优化程序,得到了材料参数值.研究表明,经过修正的Chaboche本构模型可较好地建模镍基高温合金Udimet 720 Li在高温下的各种变形行为.   相似文献   

3.
为了评估空间碎片超高速撞击航天器的碎片云破坏能力,挖掘超高速撞击数值模 拟结果数据的应用价值,基于9.53 mm铝球以6.64 km/s速度对2.2 mm铝靶撞 击的Ls-Dyna/SPH(Smoothed Particle Hydrodynamic)数值模拟研究结果,对靶后碎片云的 粒子动能进行求和统计,建立了碎片云比动能概念和函数形式;碎片云比动能综合考虑了靶 后所有碎片云粒子的动能,反映了一定距离处垂直于撞击方向平面上单位面积上的碎片云粒 子所蕴含的撞击能量;应用碎片云比动能概念,揭示出随着演化距离的增加,碎片云能量的 衰减规律;通过不同速度条件下的SPH计算,得到了碎片云的比动能函数的曲线形式随撞击 速度的变化规律;最后对采用2种材料模型进行数值模拟所对应的结果误差进行碎片云比动 能函数的曲线比较,反映出数值模拟中不同材料模型引起的差异.   相似文献   

4.
填充式防护结构的显式弹道极限方程在对弹丸进行超高速撞击损伤预测时,由于填充材料、填充方式的不同,会导致预测结果与实测数据存在一定偏差。对此,采用机器学习方式将该问题转化为二分类问题,以碰撞过程中的弹丸撞击参数、防护结构参数作为分类特征,构建了基于Adaboost的填充式防护结构超高速撞击损伤预测模型。该模型以分类回归树(CART)作为弱分类器,通过对一系列弱分类器的加权组合生成强分类器,并通过对训练样本的循环使用,实现了小样本集下的撞击损伤预测。实验结果表明,建立的Adaboost预测模型对填充式防护结构的超高速撞击损伤具有良好的预测效果,总体预测率与安全预测率相比于NASA的弹道极限方程均提高了14.3%,具有更强的通用性。通过不同训练样本规模下的交叉检验,证明了该模型具有良好的鲁棒性与准确性。   相似文献   

5.
针对航天器遭受空间碎片和微流星体撞击的问题,对蜂窝夹层结构的超高速撞击损伤监测进行研究。提出将碳纳米管薄膜共固化在蜂窝夹层结构面板表面使之具有自感应能力,结合电学成像技术对超高速撞击造成的损伤进行监测和识别。采用二级轻气炮对自感应蜂窝夹层结构进行了超高速撞击,在撞击前后分别向感应层注入微小的激励电流,根据边界电压变化重建损伤引起的电导率变化图像,从而提供有关撞击和损伤的信息。试验结果表明,基于碳纳米管薄膜的感应层性能良好,重建的电导率变化图像能够较好地反映损伤个数、位置和近似尺寸,验证了所提出技术方法的有效性,为航天器结构超高速撞击监测提供了一种新的技术手段。  相似文献   

6.
砂土硬化特征的描述及其试验验证   总被引:1,自引:1,他引:0  
采用不同路径下砂土的三轴拉伸和三轴压缩试验结果,分别选用塑性体积应变、塑性剪应变、清华模型硬化参数、塑性功和统一硬化参数H作为硬化参数,在以上硬化参数和应力比空间里探讨了砂土的硬化规律和应力路径相关性.基于修正剑桥模型的屈服函数,采用塑性体积应变、塑性功和H作为硬化参数,推导了分别对应的本构模型.通过饱和塔克拉玛干沙漠砂的三轴试验结果,表明了H在描述砂土应力应变特性上的适用性.   相似文献   

7.
卫星高压气瓶的超高速撞击试验   总被引:1,自引:0,他引:1  
微流星体及空间碎片超高速撞击对在轨航天器构成了严重威胁,星上压力容器受空间碎片撞击后所产生的威胁是十分严重的,可能导致航天器发生灾难性失效,过早结束其使命。文章通过星上常用气瓶的超高速撞击试验,获取了不同弹丸撞击参数下气瓶器壁的通孔孔径,得到了在弹丸撞击速度为(6.5±0.3)km/s、无防护情况下气瓶器壁的弹道极限,并分析了导致充压气瓶灾难性失效的弹丸直径范围;通过对试验数据拟合,初步建立了弹丸正撞击速度为(6.5±0.3)km/s、无防护情况下气瓶器壁的通孔孔径预测公式,为航天器遭遇空间碎片撞击的风险评估及防护措施制定提供依据。  相似文献   

8.
日冕物质抛射(Coronal Mass Ejection,CME)参数识别模型是太阳风预报过程的重要组成部分.在空间环境预报业务中,为提高太阳风预报的准确率,需要提高CME参数识别的精度.模型以计算任务串行的方式运行,运算效率低导致模型运算时间长,不能满足这种需求.CME参数识别模型的物理运算过程相互不独立,其在单节点上的运行方式不能满足并行化要求.基于MapReduce的并行计算框架,改进了CME参数识别模型的计算流程,提出CDMR(CME detection under MapReduce)方法,实现了CME参数识别模型的并行计算,并对比分析CME参数识别模型在串行计算和MapReduce并行计算下的运行时间,提高了模型的识别精度和计算效率.   相似文献   

9.
相较于单向拉伸试验,通过管材胀形试验(TBT,Tube Bulging Test)获得的材料性能参数能够更准确地反映材料在高压流体作用下的塑性成形性能,不同的管端边界将会严重影响管材胀形试验的测试结果.针对国际上现有试验方法和设备存在的不足,研制出了一套约束边界清晰、加载精确的管材自由胀形试验系统.在管材测试过程中,基于位移随动力主动加载的控制策略和比例伺服油缸,实现实时的轴向力、轴向位移和内压力的精确加载.端部约束的测试管材通过特殊设计的工装保证了其轴向自由滑动.实时内压力和胀形管材顶点处材料的壁厚和胀形高度信息通过超高压压力传感器、超声测厚仪和磁致伸缩位移传感器采集,进而基于Swift材料本构模型和采集到的数据拟合出材料应力应变曲线和材料性能参数.试验结果表明,管材两端侧推力与内压力对管材内腔端面的作用力和管材轴向自由对称收缩的平衡条件始终处于动态稳定中,试验设备能够准确获得实时胀形高度、顶点厚度、轴向收缩长度和内压力的信息,能够为材料性能测试和工艺设计提供可信的材料参数.   相似文献   

10.
正空间碎片与航天器的平均撞击速度为10公里/秒,这么高的撞击速度,现有材料难以"扛得住"。那么如何对这种撞击进行防护呢?空间碎片的防护实验证明,超高速弹丸(碎片)与薄靶撞击过程中,会发生破碎、熔化、气化甚至等离子体化等,形成高速运动的物质云团,称为碎片云。弹丸和薄靶  相似文献   

11.
The two layer dust shield on the GIOTTO Halley Mission is constructed in a meteoroid bumper configuration. The dust shield is instrumented so that parameters associated with the hypervelocity collision of cometary particles on the exposed surface can be determined. A multisensor detector array provides simultaneous sensing of the momentum exchange of particles impacting and subsequently penetrating the outer layer of the dust shield. Current knowledge of momentum exchange during hypervelocity impact relative to the GIOTTO Halley Mission and the dust shield experiment is reviewed. The sensors used for determination of momentum exchange exhibit a functional dependence on projectile velocity leading to an enhancement of the sensor signal as the relative impact velocity increases. The GIOTTO Mission provides a very unique opportunity to obtain hypervelocity momentum exchange information at a known impact velocity. Therefore, with the dust experiment, a determination of the velocity index for both momentum and multilayered penetration sensor is possible. Results of analysis of analytical and laboratory studies indicate that the velocity index for hypervelocity impact is approximately 2.0 at the 68 km/sec encounter impact velocity of the GIOTTO Mission. A clear determination of the size and mass distribution of the cometary dust near the comet will be possible from the in-situ measurement of the DIDSY GIOTTO experiment.  相似文献   

12.
空间碎片超高速碰撞数值模拟的SPH方法   总被引:8,自引:0,他引:8  
利用光滑质点动力学SPH(Smoothed Particle Hydrodynamics)方法对Whipple防护结构在空间碎片超高速碰撞下的物理过程进行了数值模拟.在数值模拟中,为了充分发挥SPH方法和有限元方法FEM(Finite Element Method)的优点,利用有限元单元和SPH节点混合建模,将有限元单元和SPH节点(SPH nodes)通过定义接触条件相结合,在大变形和飞溅区域采用SPH节点建模,而小变形区域则采用有限元单元建模,从而大大节省求解时间,提高计算效率.计算结果表明,弹丸在穿透前板后,形成二次碎片,碎片云经膨胀和拉长,对后板造成轻微的损伤,这和文献的相关试验数据是符合的.利用SPH方法对空间碎片的超高速碰撞过程进行数值模拟,不仅很好地预测了Whipple防护结构的破坏情况,而且对整个碰撞过程,包括碎片云的形成、膨胀和拉长过程都有形象的描述,符合超高速碰撞的试验测试结果.  相似文献   

13.
空间碎片超高速撞击动力学建模与数值仿真技术   总被引:12,自引:0,他引:12  
阐明了空间碎片超高速撞击数值仿真技术研究的目的、意义和国内外发展状况 ;重点论述了空间碎片超高速撞击数值仿真技术的主要研究内容、技术指标和具体实施途径 ,从而为研究的深入开展提供了技术依据和指导原则  相似文献   

14.
利用等离子体驱动微小碎片加速器和潘宁源的原子氧模拟装置在中国首次开展了微小碎片撞击与原子氧协同作用对Kapton膜和镀铝Kapton膜的侵蚀效应研究. 实验结果表明, 碎片撞击能明显加剧原子氧对Kapton和镀铝Kapton膜的侵蚀效应, 对航天器的寿命及可靠性构成威胁, 制约中国长寿命高可靠性航天器的发展.   相似文献   

15.
单层板撞击成坑声发射辨识及参数估计研究   总被引:1,自引:0,他引:1  
空间碎片撞击航天器的威胁对发展在轨感知系统提出需求,为研制基于声发射技术的感知系统,有必要研究利用声发射波形分析对防护结构进行损伤模式辨识的方法。文章利用超声传感器进行了铝弹丸超高速撞击单层板的声发射信号采集实验及其数值仿真,并对波形在时域和频域内进行分析,结果表明:声发射波形的主波谷值随撞击速度增加而线性增加,直到防护结构被击穿;声发射波形中的高频分量与低频分量幅值之比存在一个区别成坑模式与击穿模式的阈值。基于上述结果提出了一种在撞击弹丸尺寸已知条件下辨识成坑模式并对其撞击速度及其弹坑尺寸进行估计的方案。  相似文献   

16.
The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, Dh, and for semi-infinite targets, the depth-to-diameter ratio of craters, . An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.  相似文献   

17.
Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号