首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of constituents of the neutral coma (CN. C2. CH. O. H) of Giacobini-Zinner were made for a period of nearly three weeks during late August/early September 1985 from La Palma Observatory, Canaries Is. in addition to studies of structures and flows in the ion coma and tail. The neutral coma (in CN) was observed to extend to a radius of at least 400,000 Km, far beyond the “bow wave” identified by the ICE spacecraft. The ion coma (detected to a sunward distance of about 50,000 Km) and ion tail fan (max. length about 500,000 Km, recorded in CO+ and H2O+ were also observed throughout the period before and after the ICE encounter. An extended Type I ion tail central condensation was not observed. The maximum observed extent of the ‘ionospheric tail’ was about 50,000 Km, five hours prior to the ICE encounter. This ionospheric tail rapidly diffused into a broad tail fan.  相似文献   

2.
Looking at the chance of the next apparition of the Halley comet in 1986, ISAS decided to send a first Japasanese interplanetary spacecraft for the study of cometary hydrogen coma and solar wind. The Planet-A spacecraft which carries VUV imaging camera and solar wind plasma analyser will be launched in August 1985 and flyby the Halley comet in early March 1986 with the distance of several million kilometers from the comet nucleus. This mission is not only self-consistent but collaborative with other space mission as well as earth-bound observations. In the present paper, the Planet-A mission to Halley is described with brief explanation of the spacecraft.  相似文献   

3.
ISAS's (Institute of Space and Astronautical Science) project for the exploration of comet Halley consists of two spacecraft, Sakigake and Suisei, launched on 7 January 1985 and 18 August, respectively.

Sakigake passed the sunward side of the comet on 11 March 1986 with a miss distance of 6.99 million km. Three experiments, a plasma wave probe with dipole and search-coil antennae, a magnetometer with three axis ring core sensor on an extended boom and a four-grid Faraday cup attached to the inner side of the wall of the spacecraft, detected various phenomena caused by the comet at a distance as far as 7 million km.

The other spacecraft, Suisei, flew by the comet on its sunward side with a miss distance of 151 thousand km on 8 March 1986. It carried two experiments, an ultraviolet imager and an energy analyzer for ions. The UV imager was able to take the first image of the hydrogen cloud of comet Halley on 26 November 1985. With this experiment, the spin period of the cometary nucleus, location of jets, amount of water evaporation, distribution of hydrogen density inside cloud, etc. were clarified. The energy analyser experiment provided information on the intensive interaction between cometary and solar wind ions.  相似文献   


4.
Venera-Halley mission is to be launched to Venus in Dec. 1984. It will fly by Venus in June 1985. Separation of the cometary probe and Venera descend module will take place at that time. The gravitational swing-by at Venus will provide the encounter with the Halley comet in March 1986. The remote sensing of the inner coma (TV-imagery, spectrometry in the region from 1200 A to 12 μm, polarimetry) and of the nucleus, direct measurements of dust fluxes, dust composition, plasma and magnetic field are planned in the framework of multinational cooperation.  相似文献   

5.
In March 6 and 9, 1986 the spacecrafts ‘Vega-1’ and ‘Vega-2’ have flown through the coma of comet Halley and have carried measurements of plasma, energetic particles, magnetic field and plasma waves along its trajectory. A short review of these measurements and its comparison with theoretical models of solar wind interaction with comets are given.

The spacecrafts ‘Vega-1’ and ‘Vega-2’ have studied the solar wind loading by cometary ions, the structure of cometary bow shock and the processes in the inner coma of comet Halley. Exactly in this sequence we discuss the results of measurements and compare them with the theory.  相似文献   


6.
An overview is presented of electrons, protons and heavier ions (E > 20 keV) recorded by the energetic particle detector EPONA in the Comet Halley environment, 12–15 March, 1986. Pick-up ions were detected at distances of up to at least 7.5 × 106 km from the nucleus. Estimates of the energies that typical cometary ions may be expected to acquire from the solar wind pertaining at Encounter show that the pick-up process is insufficient to account for the energies of the particles detected. An additional mechanism must thus be postulated to account for the observed particle signatures. Preliminary correlations with magnetic and plasma wave data from other instruments suggest that the presence of MHD turbulence at several million kilometers upstream of the bowshock may have contributed to the acceleration of the first pick-up ions observed. The bowshock boundary (inbound) does not appear to have constituted a location where particle acceleration to high energies took place. Downstream of the shock boundary, hardening of the energy spectrum and the development of less anisotropic particle streaming was observed to occur when the spacecraft was in a turbulent environment 1 × 106 km from the nucleus. The waxing influence of mass loading as a mechanism for reducing energetic particle fluxes as well as the depletion of energetic ions due to their escape along open field lines and to charge exchange collision with neutrals in a progressively more stagnant solar wind, may be inferred in a regime (seen on the magnetometer data to be largely non-turbulent) traversed by the spacecraft from 5 × 105 km from the nucleus to within the magnetic pile-up region. A major burst of ions and electrons (not yet established to be of cometary origin) occurred when the spacecraft was close to the Contact Surface. A population of high energy electrons (from 180 keV to at least 300 keV) was detected for about one hour before Closest Approach and for several hours thereafter. Also an energetic beam of electrons was identified exiting from a location at about 1 × 106 km from the nucleus (outbound). Finally, differences between inbound and outbound particle signatures are described.  相似文献   

7.
Observations of comet Halley through CCD and Schmidt plates have been performed at Catania Observatory (Italy) from October 1985 through April 1986. Preliminary results are presented concerning the spatial structures for different spectral ranges of cometary light.  相似文献   

8.
This review of the plasma regime sampled by the encounter of the International Cometary Explorer spacecraft (ICE) with the comet Giacobini-Zinner, discusses the shock, or bow wave, ion pickup, ionization mechanisms, and the cometary plasma tail.

The observations are consistent with the existence of a weak shock, which may be pulsating, but do not exclude the suggestion by Wallis and Dryer that the shock, though present around the sub-solar point, is in process of decaying to a wave on the flanks.

Pickup of cometary ions provokes, by means of several mechanisms, ion cyclotron, mirror, beam and electrostatic instabilities which cause strong turbulence in the inner coma, as indicated in the power spectra of the magnetic field in the coma and the surrounding volume. Heavy mass loading and consequent slowing down of the solar wind is observed. Acceleration of ions by a stochastic mechanism is indicated.

Ionization of cometary neutrals occurs principally by photoionization and charge exchange. Alfvens critical velocity mechanism, likely operates only in the inner coma not visited by ICE. A steep increase of nearly two orders of magnitude in electron density occurs in the tail, where electron velocity distributions show evidence of entry of electrons from the solar wind. The turbulence there is damped by the high ion density and low temperature.

In general, the vicinity of the comet is filled with plasma phenomena and a rich variety of corresponding atomic and molecular processes can be studied there. Comparison between the ICE, Giotto, and Vega observations forms a most valuable future study.  相似文献   


9.
Three distinct boundaries are identified from the PICCA cometary ion observations within the innermost part of the coma of comet Halley: (1) the 'cometopause' at a cometocentric distance Rc 1.5×105 km, characterized by the appearance of water-group ions well above background; (2) the 'cold cometary plasma boundary' at Rc 3×104 km, characterized by a sudden and simultaneous decrease in the temperatures of all cometary ions, and (3) the 'ionopause' at Rc 6000 km, characterized by a fast decrease in the intensity of all cometary ions by a factor 3–5. Between the first two boundaries only ions with masses less than 50 amu are present, showing distinct maximum intensities at 18, 32 and 44 amu at the second boundary. Downstream of the second boundary also ions of mass 12, 64, 76, 86 and 100 amu are detected.  相似文献   

10.
A technique has been developed which allows relatively accurate modelling of cometary gas production from nothing more than a visible light curve. Application to P/Halley suggests the production rate of parent molecules will be about 2.6 × 1029 per second on March 10, 1986, for example. The uncertainties and intrinsic limitations in this approach are outlined. The theory is then extended to predictions of abundance of other gaseous species, and a photometric model of these gases provided. Combined with the dust model of N. Divine, preliminary predictions of the luminance of P/Halley as seen in any direction from inside the coma or outside can be provided for λλ3000–7000.  相似文献   

11.
From the discrete spectra of the emissions from the comet in the frequency range from 30 to 195 kHz named CKR (Cometary Kilometric Radiation), movements of the bow shock at comet Halley are concluded, i.e., the observed CKR emissions can be interpreted as being generated and propagating from the moving shock. The motion of the shocks are possibly associated with time variation of the solar wind and of the cometary outgassings. By in-situ plasma waves observations using PWP (Plasma Wave Probe) onboard the Sakigake spacecraft, the characteristic spectra of the electrostatic electron plasma waves, the electron cyclotron harmonic waves, and the ion sound waves have been detected during the interval of the Halley's comet fly-by. Compared with the results of a Faraday cup observation and a magnetometer, it is concluded that these plasma wave phenomena are the manifestation of the ion pick-up processes. The ion pick-up processes are taking place even in the remote region within a distance range from 7×106 to 107 km from the cometary nucleus.  相似文献   

12.
EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.

The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.

Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space.  相似文献   


13.
For spacecraft without on-board navigation capability, their ability to fly close to target comets is limited primarily by the comet's ephemeris uncertainty. Factors contributing to cometary ephemeris uncertainties include measurement errors, star catalog errors, and offsets between the comet's center of mass and its observed center of light. The situation is further complicated by nongravitational forces acting upon a comet's nucleus and the paucity of observers currently making astrometric observations of comets. For comet Halley, the nongravitational forces affecting this comet's motion are consistent with the rocket effect of an outgassing water ice nucleus; the nucleus is apparently rotating in a direct sense about a stable spin axis. Accurate comet Halley ephemerides for close spacecraft flybys will require continued efforts to refine the existing nongravitational force model. In addition, the various flyby missions to comet Halley will require a well organized network of astrometric observers. These observers must rapidly reduce their observations in early 1986, thus allowing continuous updates to the comet's ephemeris just prior to the spacecraft flybys in March 1986.  相似文献   

14.
The navigation of the ESA spacecraft Giotto to its encounter with comet P/Halley on 14 March 1986 required just 10% of the fuel available. Although the spacecraft was damaged by dust impacts during its close flyby at the nucleus of P/Halley it was retargeted to return close to Earth to maintain the option to extend the mission to encounter another comet, P/Grigg-Skjellerup on 10 July 1992.

On 2 April 1986 the spacecraft was put into hibernation configuration and had been orbiting the Sun in the ecliptic with an orbital period of 10 months. On 19 February 1990 it was reactivated, spacecraft subsystems and the payload checked out to determine its health status.

On 2 July 1990 Giotto performed succesfully the first-ever Earth gravity assist manoeuvre of a spacecraft approaching the Earth from deep space and was retargeted for comet P/Grigg--Skjellerup. It was concluded that the spacecraft is ready to provide valuable data during a potential encounter with a second comet.  相似文献   


15.
A European probe to comet Halley is proposed. The probe's model payload consists of 8 scientific instruments, viz. neutral, ion and dust impact mass spectrometers, magnetometer, medium energy ion and electron analyzer, camera, dust impact detectors and plasma wave experiment. Fly-by of the comet Halley nucleus will take place on November 28th, 1985, at about 500 km miss distance. The main spacecraft serves as relay link to transmit the observed data to Earth. As probe, a modified ISEE 2 design is proposed. Because of the cometary dust hazard expected in the coma a heavy dust shield (27 kg) is required, consisting of a thin front sheet and a 3 layer rear sheet. The probe is spin-stabilized (12 rpm), has no active attitude and orbit control capability and uses battery power only to provide about 1000 Wh for a measuring phase. A despun antenna transmits up to 20 kbit/s, in X-band. The total probe mass is estimated at 250 kg. The 3 model development programme should start in mid 1981 with Phase B.  相似文献   

16.
The nucleus of an active comet, such as comet Halley near its perihelion, produces large quantities of gas and dust. The resulting cometary atmosphere, or coma, extends more than a million kilometers into space, where it interacts with the solar wind. An “induced” cometary magnetosphere is a consequence of this interaction. Cometary ion pick-up and mass loading of the solar wind starts to take place at very large cometocentric distances. Eventually this mass loading leads to the formation of a weak cometary bow shock. Even closer to the nucleus, collisional processes, such as ion-neutral chemistry, become important. Other features of the magnetosphere of an active comet include a magnetic barrier, a magnetotail, and a diamagnetic cavity near the nucleus. X-ray emission from comets is produced by the interaction of the solar wind with cometary neutrals and this topic is also discussed. A broad review of the cometary magnetosphere will be given in this paper.  相似文献   

17.
This contribution starts with a short overview on cometary dust modelling and then focuses on the application of coma modelling with respect to in-situ measurements of cometary dust and ground based observations. The fountain model, valid for the dynamics of small cometary dust particles, is discussed. Models using Keplarian theory for the motion of the dust particles are outlined and the ESOC coma model is presented. Some direct applications of this model to analyse the results of the recent spacecraft flybys of comet Halley, as dust flux profiles, particle ground tracks and envelope positions, are shown. To compare the model with ground-based astronomical observations, the utilization of the ESOC coma model for the generation of synthetic images is demonstrated and some future prospects of this technique are outlined.  相似文献   

18.
GIOTTO, the probe which is presently developed by the European Space Agency, will encounter comet Halley in March 1986 with a relative velocity of 69 km/s. The fore section of the surface will be submitted to the bombardment of dust grains and neutral molecules in the final phase of the mission, like that of an Earth orbiter during atmospheric re-entry. These particles have a kinetic energy of 24 eV per a.m.u.; they produce secondary ions and electrons which form a plasma cloud around the body and control the electric potential of its surface. This paper is a review of the work which has been performed on the subject by dedicated study groups; the purpose of their action was to gather information and produce new findings which might have an influence on the design of the spacecraft and help in the interpretation of the data collected by the scientific payload.

The effect of impact induced plasma may already be significant at 105 km from the comet nucleus; at a distance of 1000 km the flux of ions and electrons produced by cometary dust and neutrals will possibly exceed that of the ambient plasma by more than three orders of magnitude. It is expected that the spacecraft surface potential will be positive and will reach at least a few tens of volts; coating the leading surface of the spacecraft with a thin layer of gold or silver will help reducing the emission of ions from neutral gas. Computer simulation models are used to predict the structure of the charged particle density distribution in the vicinity of the surface. Effects associated with the wake and differential charging are also discussed. The significance of these results is conditioned by the validity of the models and the largest source of uncertainty seems to be associated with the plasma generated by dust impact.  相似文献   


19.
The main molecular processes to produce the hydrogen comae of comets are now well known: Water, the main constituent of cometary atmospheres, is photodissociated by the solar ultraviolet radiation to form the high (20 km s−1) and low (8 km s−1) velocity components of the atomic hydrogen. The hydrogen clouds of various fresh comets have been observed in 1216Å by a number of spacecrafts. Ultraviolet observations of short period comets are, however, rather rare. Consequently Comet P/Halley in this apparition is a good object to obtain new physics of the hydrogen coma. Strong breathing of the hydrogen coma of this comet found by “Suisei” provides just such an example. The rotational period of Comet Halley's nucleus, its activity in the form of outbursts alone, and the position of jet sources etc. are determined from the breathing phenomena. Atomic hydrogen from organic compounds with a velocity of 11 km s−1 play an important role in that analysis. The time variations of the water production rate of Comet Halley during this apparition observed by various spacecrafts appear to be in agreement with each other and are about 1.5–2 times larger than the standard model. The difficulty of the calibration problem was emphasized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号