首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report results from analysis of data from Pioneer Saturn's Imaging Photopolarimeter. These include the discovery of a new ring and satellite, the structure of the atmosphere of Saturn and Titan, the inhomogeneous nature of Saturn's rings, and a model for the rings' formation and bimodal particle size distribution.  相似文献   

2.
The Pioneer 11 Infrared Radiometer instrument made observations of Saturn and its rings in broadband channels centered at 20 and 45 μm and obtained whole-disk information on Titan. A planetary average effective temperature of 96.5±2.5 K implies a total emission 2.8 times the absorbed sunlight. Correlation with radio science results implies that the molar fraction of H2 is 90±3% (assuming the rest is He). Temperatures at the 1 bar level are 137 to 140 K; regions appearing cooler may be overlain by a cloud acting as a 124 K blackbody surface. A minimum temperature averaging 87 K is reached near 0.06 bars. Ring boundaries and optical depths are consistent with those at optical wavelengths. Ring temperatures are 64–86 K on the south (illuminated) side, ~54 K on the north (unilluminated) side, and at least 67 K in Saturn's shadow. There is evidence for a south to north drop in ring temperatures. Titan's 45 μm brightness temperature is 75±5 K.  相似文献   

3.
The Voyager 2 photopolarimeter experiment observed the intensity and polarization of scattered sunlight from the atmospheres of Saturn and Titan in the near-UV at 2640 Å and in the near-IR at 7500 Å. Measurements of Saturn's limb brightening and polarization at several phase angles up to 70° indicate that a significant optical depth of UV absorbers are present in the top 100 mbar of Saturn's atmosphere in the Equatorial Zone and north polar region, and possibly at other latitudes as well. UV absorbers are prominent in polar regions, suggesting that charged particle precipitation from the magnetosphere may be important in their formation.The whole-body polarization of Titan is strongly positive in both the UV and near IR. If spherical particles are responsible for the polarization, no single size distribution or refractive index can account for the polarization at both wavelengths. The model atmosphere proposed by Tomasko and Smith [1], characterized by a gradient in particle size with altitude, seems capable of explaining the Voyager observations. If non-spherical particles predominate, the Voyager observations place important constraints on their scattering properties.  相似文献   

4.
Saturn lies at nearly twice Jupiter's distance from the Sun and nearly all parts of its system are characterized by much smaller scales than those which are important in the case of Jupiter. This appears in the structures of the planet's atmosphere, in the sizes of classical satellites other than Titan vis-à-vis those of the Galilean satellites, in the plethora of small Saturnian satellites, especially Lagrangian co-orbiters, in the structure of Saturn's F-Ring as contrasted with that of Jupiter's Ring and finally in the highly structured detail in Saturn's Rings, much finer than seriously considered in past theoretical discussions. Uranus' Rings were unknown until five years ago. The discovery and observation of these rings have revived contributions to theory originally intended for application to Saturn's Rings. Models have also been generated for eccentric rings for application to Uranus' Rings which also apply to those of Saturn. These two classes of model are reviewed in the present paper along with the first tentative steps made down the road to unravelling the complexity of Saturn's Rings.  相似文献   

5.
The Voyager observations of electrical discharges in Saturn's rings strongly support earlier speculations on the role played by electrostatics, magnetic fields, and lightning phenomena in the primitive solar system. They also suggest conditions then by direct analogy rather than by extrapolating backwards through time from conditions now. The observed discharges show a pronounced 10h periodicity, which suggests a source in Keplerian orbit at 1.80 ± 0.01 Saturn radii (1 RS = 60,330 km). In that region, the B ring is thicker than optical depth 1.8 for about 5,000 km. At 1.805 ± 0.001 Saturn radii, however, the ring is virtually transparent for a gap of width 200 m. We conclude that a small satellite orbits Saturn at that radius and clears the gap. The gap edges must prevent diffusive filling of the gap by fine material which is especially abundant at this position in the rings and would otherwise destroy the gap in minutes. The discharges represent the satellite's interaction with the outer edge of the gap. Spoke formation may involve the interaction of ring material in the vicinity of the gap.  相似文献   

6.
The Planetary Radio Astronomy instruments on Voyager 1 and 2 provided new, highly detailed measurements of several different kinds of strong, nonthermal radiation generated in the inner magnetospheres and upper ionospheres of Jupiter and Saturn. At Jupiter, an intense decameter-wavelength component (between a few tenths of a MHz and 39.5 MHz) is characterized by complex, highly organized structure in the frequency-time domain and by a strong dependence on the longitude of the observer and, in some cases, of Io. At frequencies below about 1 MHz there exists a (principally) kilometer-wavelength component of emission that is bursty, relatively broadbanded (typically covering 10 to 1000 kHz), and strongly modulated by planetary rotation. The properties of this component are consistent with a source confined to high latitudes on the dayside hemisphere of Jupiter. A second kilometric component is narrow-banded, relatively weak and exhibits a spectral peak near 100 kHz. The narrowband component also occurs periodically but at a repetition rate that is a few percent slower than that corresponding to the planetary rotation rate. This component is thought to originate at a frequency near the electron plasma frequency in the outer part of the Io plasma torus (8 to 10 RJ) and to reflect the small departures from perfect corotation experienced by plasma there.The Voyager instruments also detected intense, low frequency, radio emissions from the Saturn system. The Saturnian kilometric radiation is observed in a relatively narrow frequency band between 3 kHz and 1.2 MHz, is elliptically or circularly polarized, and is strongly modulated in intensity at Saturn's 10.66-hr rotation period. This emission is believed to be emitted in the right-hand extraordinary mode from regions near or in Saturn's dayside, polar, magnetospheric cusps. Variations in intensity at Saturn's rotation period may correspond to the rotation of a localized magnetic anomaly into the vicinity of the ionospheric footprint of the polar cusp. Variations in activity on time scales of a few days and longer seem to indicate that both the solar wind and the satellite Dione can also influence the generation of the radio emission.  相似文献   

7.
The role of electromagnetic effects in planetary rings is reviewed. The rings consist of a collection of solid particles with a size spectrum ranging from submicron to 10's of meters (at least in the case of Saturn's rings). Due to the interaction with the ambient plasma, and solar UV radiation, the particles carry electrical charges. Interactions of particles with the planetary electromagnetic field, both singly and collectively, are described, as well as the reactions and influence on plasma transients. The latter leads to a theory for the formation of Saturn's spokes, which is briefly reviewed.  相似文献   

8.
Voyager 2 images of Saturn's rings have been analyzed for spoke activity. More than 80 and 40 different spokes have been measured at the morning and at the evening ansa, respectively. Higher rate of spoke formation has been found at 145° ± 15° SLS and at 305° ± 15° SLS which persisted for at least 3 Saturn revolutions. Higher spoke activity (formation and growth in width) by more than a factor 3 has been observed over the nightside hemisphere of Saturn than over the dayside hemisphere. The age distribution (i.e. time from radial formation until observation, assuming Keplerian shear) of the leading (old) edges of spokes has its maximum at ~ 9,000 s and ~ 6,000 s for spokes observed at the morning ansa and at the evening ansa, respectively. The highest spoke age observed is ~ 20,000 s. The age distribution of the trailing (young) edges of spokes peaks at < 2,000 s at both ansae but has its mean at ~ 4,500 s and ~ 3,500 s, respectively. On the average the observed spokes grew in width for ~ 4,500 s at the morning ansa and for ~ 2,500 s at the evening ansa. The maximum time of growth in width was ~ 12,000 s.  相似文献   

9.
We have examined the region of occurrence of flux transfer events for three distinct orientations of the interplanetary magnetic field: nearly horizontal in the solar magnetospheric equator, diagonally southward at 45° to the magnetospheric equator and nearly due south. For horizontal IMF conditions the FTE's occur in a horizontal band about ± 6 RE wide. For diagonally southward IMF conditions, the FTE's occur in a diagonal swath about ± 6 RE wide passing through the subsolar point. For duskward but nearly due southward IMF conditions, our observations reveal FTE's throughout the northern morning quadrant. These observations are consistent with a near equatorial source for flux transfer events and hence with component merging and not anti-parallel merging. These observations also help understand the energetic ion anisotropies seen in these events.  相似文献   

10.
Infrared observations of Venus from the Pioneer Orbiter have been used to study the limb darkening properties of the cloud tops at wavelengths and spatial resolutions not previously attained. The preliminary results show evidence for an extensive haze feature over the equatorial morning terminator and for small amounts of a far-infrared absorber concentrated near local noon, also near the equator. The evidence for these features is reviewed and their possible origins briefly discussed.  相似文献   

11.
Spin-scan images from the Pioneer Venus Orbiter UV Spectrometer and the Cloud Photopolarimeter provide a set of planetary contrast measurements in the wavelength range 1990A to 3650A and phase angles from 33°–130°. The planet is darkest at the point where the UVS line of sight penetrates perpendicular to the cloud tops: thus the absorbing material responsible must be deep in the atmosphere. Sulfur dioxide absorption can explain the amount of contrast seen between 2000A and 3200A. At the longer wavelengths, the persistence of contrast requires another absorber which is deeper in the atmosphere and strongly associated with the location of the SO2. Part of the observed contrast is due to the high-lying haze discovered from Pioneer Venus polarimetry. The correlation between planetary contrast and polarization does not support large scale clearing or major vertical motions of the cloud tops as the sole cause of the observed contrast. However, a scheme in which absorbers subject to photochemical destruction are mixed upward into the cloud top region provides a consistent explanation for the origin of these markings.  相似文献   

12.
Pioneer Venus data from the first 5 years of operation show a decline by more than a factor of ten in SO2 at the cloud tops. A consistent decline has also recurred in the amount of sub-micron haze above the clouds. The correlation between these two observables is 0.8 over this period. A plausible explanation is injection of SO2 from episodic volcanism. The episodic behavior implies that steady state models of the Venus cloud chemistry and dynamics may be of limited use.  相似文献   

13.
Jupiter and Saturn are two of the more “exotic” planets in our solar system. The former possesses its own system with 15 satellites in orbit about the parent planet. Saturn has a uniquely well developed and distinctive ring system of particulate matter and also at least 11 satellites, including the largest one amongst all the planets, Titan, with a radius of 2900 km ± 100 km. In the decade of the 70's, the USA launched 4 unmanned spacecraft to probe these giant planets in-situ with a suite of highly advanced instrumentation. Four separate encounters have occurred at Jupiter: 1. Pioneer 10 in December 1973 2. Pioner 11 in December 1974 3. Voyager 1 in March 1979 4. Voyager 2 in July 1979 The characteristics of these trajectories is shown in Table I. Thus far, only a single encounter of Saturn has occurred, that by Pioneer 11 in September 1979. Future encounters of Saturn by Voyager spacecraft will occur in mid-November 1980 and late-August 1981. It is the purpose of this talk to summarize what is presently known about the magnetic fields of these planets and the characteristics of their magnetospheres, which are formed by interaction with the solar wind.  相似文献   

14.
A Langmuir probe operated in fixed bias mode was launched onboard a RH-560 rocket from the Sriharikota Range (SHAR, Lat.13° 42'N, Geog. Long.80° 14'E, dip 10°) India on October 1, 1980 at 21h03 IST, to study the electron density profile and the electron density irregularities in the equatorial spread-F. The payload was designed to study medium and large scale irregularities. A highly variable and structured electron density profile was obtained. This was the first rocket launch in the Indian zone during spread-F condition.  相似文献   

15.
Voyager 1 radio occultation study of Saturn's rings gives detailed information regarding the rings' radial structure and particle sizes. Structure within the rings is mapped to a radial resolution of few hundred m in the tenuous parts of ring C and the Cassini Division, and few km over ost of ring A. Fine resolution profiles reveal extremely sharp edges, very narrow gaps, and a host of wave phenomena. Particle size distributions obtained from occultation data within several ring regions are roughly consistent with an inverse cube power law with upper size cutoff in the 5 to 10 m radius range.  相似文献   

16.
A Langmuir probe designed and developed at the Physical Research Laboratory, Ahmedabad has been used on a variety of rockets since 1966 from the Thumba Equatorial Rocket Launching Station, TERLS (8°31'N, 76°52'E, dip.lat. 0°47'S) to study the structure of the equatorial lower ionosphere. Good quality data is available from a set of twenty five rocket flights conducted during the period 1966 to 1978. This data has been obtained using a single standardised instrument at a single location and using a uniform procedure for data reading and analysis, and adopting a calibration procedure to convert the measured probe currents into electron densities which involves a height dependent calibration factor. The data has been used to establish the gross features of the equatorial lower ionosphere under daytime, night time, morning twilight and evening twilight periods.  相似文献   

17.
Deep 66° field photographs of the sky have been taken by the SL - 1 Very Wide Field Camera (experiment 1-ES-022) at 1650, 1930 and 2530 Å, with a limiting magnitude of 9.3 at 1930 Å. A 1,2 × 2,4Kpc ultraviolet extension of the Shapley's wing of the small Magellanic Cloud is revealed.  相似文献   

18.
The Voyager 1 measurements made during the Titan flyby reveal that Saturn's rotating magnetospheric plasma interacts directly with Titan's neutral atmosphere and ionosphere. This results from the lack of an intrinsic magnetic field at Titan. The interaction induces a magnetosphere which deflects the flowing plasma around Titan and forms a plasma wake downstream. Within the tail of the induced magnetosphere, ions of ionospheric origin flow away from Titan. Just outside Titan's magnetosphere, a substantial ion-exosphere forms from an extensive hydrogen-nitrogen exosphere. The exospheric ions are picked up and carried downstream into the wake by the plasma flowing around Titan. Mass loading produced by the addition of exospheric ions slows the wake plasma down considerably in the vicinity of the magnetopause.  相似文献   

19.
Observations of solar cosmic ray events far from the sun (?1 AU) became possible after the launch of Pioneer 10 in 1972. Four spacecraft have now travelled beyond the orbit of Jupiter - Pioneer 10/11 and Voyager 1/2 — and are producing a growing body of distant observations of solar cosmic ray events. Initial studies using Pioneer 10/11 data out to ~6 AU interpreted flare particle observations in terms of a diffusion model, including the effects of convection and adiabatic energy loss. This model enjoyed general success in explaining the time-intensity profiles in cases where the spacecraft connection longitude at the sun did not change significantly with time. The results implied that the radial diffusion coefficient (Kr) increased slowly with distance over that radial range. More recent results at larger distances imply that Kr may begin to decrease beyond ~5 AU. It is not yet clear whether the standard diffusion model will be adequate to explain solar events well beyond 5 AU. The fact that large events at very large distances can last up to two solar rotations implies that solar wind stream structure will also play a role in the event dynamics. In general, however, observations at large distances offer perhaps the best hope of separating interplanetary propagation effects from coronal storage and propagation effects which frequently dominate observed event profiles at 1 AU.  相似文献   

20.
We have calculated the vertical structure of planetary dust rings as it results from a balance between an electrostatic force on the dust grains and the vertical component of the gravitational force from the central planet. The electrostatic force results from the charging of the dust grains by the ambient plasma and a large scale electric field due to a shielding electric field and the resulting vertical dust distribution are strongly dependent on dust size, dust and plasma density, plasma temperature and plasma ion type. The dust density distribution has a different dependence on these parameters in tenuous and in dense dust rings. We solve the relevant equations numerically and also by linearization in the limiting cases of tenuous or dense rings. Our results indicate that the effects treated in this paper may be important in both Jupiter's and Saturn's rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号