首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
高温应变接触式测量精度影响因素研究   总被引:1,自引:0,他引:1  
高温结构热强度、热疲劳等问题的研究需要高温应变的精准测量。利用自主研制的自由框架丝栅式高温应变片开展结构高温应变测量精度影响因素研究,结合应变片结构与测量原理,建立高温应变片应变信息传递以及分布有限元模型,分析对比被测构件与敏感栅丝表面应变场的分布情况,确定高温应变片尺寸参数与使用参数对应变测量精度的影响因素,为应变片的设计与使用提供依据。提出了合适的丝栅式应变片结构参数,并利用高温应变片实验进行验证,确定了高温接触式应变测量精度影响因素,降低环节敏感性,提高高温应变测量精度,并可为其他形式的应变片的测量精度研究提供依据。  相似文献   

2.
文章介绍了ECAL/AMS-02动应变测量系统的组成及利用外推法对其动应变测量结果进行推算。外推法是在充分试验的基础上,结合弹性力学理论,对试验测量结果进行外推计算,以求得测量点最大的应变值和相对应的最大主应力。文章详细介绍了外推法计算的步骤,在工程中有很大的应用价值。  相似文献   

3.
为实现空间环境下机器人关节的谐波传动输出力矩测量,研究测量柔轮形变获取力矩的谐波测力技术。使用LS-DYNA有限元分析软件对谐波传动进行瞬态动力学分析,得到谐波柔轮的动应变特性,以此为依据对谐波测力技术的应变片设计方案进行分析和优化设计。经优化设计的谐波力矩传感器在未滤波的情况下均方根误差为1.6%,稳态测量误差为2%,采用低通滤波后稳态测量误差降至0.5%,满足空间机器人关节力矩测量的需求。  相似文献   

4.
对称恒定电流激励技术是使用一对匹配的恒定电流源激励只有一个工作应变片的应变测量方法。这项技术提供了非常强的抑制静电噪声拾波干扰的能力,应用于只要求使用2线连接的动态应变测量或应变型传感器这种无抗干扰连接的方式。文章介绍了这种新型动态应变测量技术的特点,并与传统的使用惠斯顿电桥和单端恒定电流源激励的技术进行了比较。此技术还可以提供检测传感器健康状态和连接电缆状态的方法。  相似文献   

5.
一种脉冲供电的惠氏电桥可用于测量大的、快速变化的应变值。它以薄膜应变片为敏感,元件,主要用于冲击试验。该电路也适用于其他电阻传感器(如压力计、温度计等)。和通常的应变测量设备相比较,它的信噪比提高了6倍。它能用离散取样测量静态应变,或用每秒10000次取样速度在35~200μs 时间里测量动态应变。  相似文献   

6.
赵经文 《宇航学报》1994,15(4):31-34
文中计算了铝板受撞击杆未穿透撞击时弹塑性应变波沿板面的传播,并与实验结果相验证。结果表明,板不太厚时,计入膜力和剪切的板弯曲理论和三维分析的结果都与实验结果相符合。为模拟杆的撞击计算时取其直接被撞部分的板具有击杆的速度和动量,其余部分为静止。板内剪切、弯曲和中面变形三者的弹塑性本构关系可以假定为不相耦合。实验中,用气炮射击铝杆,击中板后,用应变片,动态应变记录仪记录板面不同位置的应变历程。  相似文献   

7.
双曲梁传感器推力测量技术应用   总被引:7,自引:0,他引:7  
为提高小推力发动机的测量精度,对原测量误差大、测量结果易受环境情况影响的应变梁推力测量装置进行了改进。改进后采用双曲梁推力测量系统。从安装、校准等方面介绍了系统的改进措施及实际应用情况。试验结果表明,双曲梁推力测量系统测量精度高,内阻输出低、抗电干扰性能好。  相似文献   

8.
带不锈钢隔膜的硅压阻压力传感器在航天等许多领域应用很广。它的压力应变膜片是硅应变膜片,其制造工艺是集成电路及微机械加工工艺。将不锈钢隔膜、灌充液及硅应变膜片有机地结合起来,使传感器的精度高、可靠性好、稳定性好及动态性能好,不但用于普通气体及液体的压力测量,还可用于腐蚀性介质的压力测量。文中介绍其工作原理、结构、制造工艺及技术指标最后指出今后研究的工作重点。  相似文献   

9.
基于体积膨胀原理研制了一种固体推进剂粘弹性泊松比测量系统,实现了固体推进剂试件级的粘弹性泊松比实时快捷测量,粘弹性泊松比测量数值的有效位数达到3位,可以为固体发动机精细化设计提供有力支撑。采用该系统开展了应变率及配方对HTPB推进剂粘弹性泊松比的影响规律试验研究。结果表明,HTPB推进剂的粘弹性泊松比随应变增加,呈现非线性降低的特征,且与应变率及配方具有明显的相关性,应变率越大,其粘弹性泊松比下降的越剧烈,也表明其内部的“脱湿”损伤越剧烈,同时配方中的大颗粒AP的含量越高,其内部“脱湿”越容易发生,粘弹性泊松比越容易下降。  相似文献   

10.
大型运载火箭质量与横向质心测量新工艺   总被引:6,自引:0,他引:6  
论述了运载火箭质量、横向质心测量的分散式电子测量系统工艺技术,对测量原理、测量设备和测量方法以及精度分析做了简要介绍。该项工艺经检定与评审已用于CZ-3A二子级、三子级的测量,火箭两次飞行中都准确地将卫星送入轨道。  相似文献   

11.
PWM高速开关阀动态调节特性仿真研究   总被引:2,自引:0,他引:2  
针对某型号发动机燃油调节器的脉宽调制(PWM)高速开关阀,通过建立高速开关阀系统动态数学模型,开展了高速开关阀调节工作过程动态压力与流量特性的仿真研究。对影响开关阀动态输出特性的相关因素进行了比较分析,结果表明:阀座通径、驱动频率与容腔体积等是影响高速开关阀动态性能的主要因素,并提出相应的改进措施。为改善高速开关阀动态调节特性、提高作动控制系统的控制精度与性能提供参考与借鉴。  相似文献   

12.
介绍了在水下武器试验中动态数据录取系统的工作原理 ,并对录取过程中出现的异常值进行了深入的分析 ,提出了几种异常值合理剔除和取代的方法 ,最后通过试验中的应用来证明这些方法的有效性。  相似文献   

13.
带状电子注在均匀磁场作用下传输时,很容易形成Diocotron不稳定性,导致电子注在传输过程中产生逐渐的崩溃。文章采用交错排列的磁堆形成的PCM磁场聚焦半无限带状电子注,分析了PCM磁场聚焦半无限带状注的作用机理,得出半无限带状电子注在PCM磁场作用下的包络方程(Matthieu方程)。结合理论分析,使用三维粒子模拟程序模拟了PCM磁场对半无限带状电子注的聚焦,详细研究了PCM磁场的部分参数对电子注传输的影响,并对模拟结果进行了分析。  相似文献   

14.
可调谐二极管激光器在电流调谐过程中的瞬态特性,包括瞬态输出波长和线宽等光学参数,在TDLAS系统中是一个重要的参数需要进行实时准确的测定。而常规的测量方法无法同时满足高精度与高速度的要求,因此,对短光纤延迟差拍法测量TDL的动态特性进行了理论分析和实验研究,搭建测试系统,确定了光纤延迟线长度与调谐率对差拍信号纯度的影响...  相似文献   

15.
可调谐二极管激光器在电流调谐过程中的瞬态特性,包括瞬态输出波长和线宽等光学参数,在TDLAS系统中是一个重要的参数需要进行实时准确的测定。而常规的测量方法无法同时满足高精度与高速度的要求,因此,对短光纤延迟差拍法测量TDL的动态特性进行了理论分析和实验研究,搭建测试系统,确定了光纤延迟线长度与调谐率对差拍信号纯度的影响,并分别对DFB型TDL的动态调谐特性进行了实时测量,由差拍信号得到激光器在一个电流调谐周期内对应于不同注入电流的瞬态输出波长及其线宽,即电流调谐瞬态特性。实验结果与由光谱仪测得静态特性比较后发现两者误差在0.003nm范围内,光纤延时自外差法可以对TDL瞬态特性进行快速实时而准确的监测。将其应用于TDLAS系统可提高测量精度,且可以根据监测的瞬态特性最终实现对TDL实时监控与优化。  相似文献   

16.
赤道作图法是卫星及其部件磁矩测量和计算的主要方法,其测试结果受到多种因素的影响。文章首先介绍赤道作图法(亦称近场分析法)的基本原理,分析该方法在测量和计算磁矩过程中的部分误差来源;然后基于标准磁块模型研究模型磁偏心距、环境磁场波动与赤道作图法测试误差的关系;同时提出近远场梯度差分的方法以提升磁矩计算结果的准确度。利用改进方法对标准磁块模型进行测量和数据处理的结果表明,该方法的测量(计算)误差可控制在3%以内。  相似文献   

17.
纯音测距体制中软件解模糊的实现方法   总被引:2,自引:0,他引:2  
朱克勤  高敏 《上海航天》2003,20(4):26-29
基于无线电纯音测距的原理,逐步推出用软件实现匹配解距离模糊的方法。讨论了选择原测音时应考虑的因素,分析了相位精度的影响,并介绍了静态匹配、原测音恢复和动态跟踪的算法。实际应用表明,该方法解距离模糊正确,距离跟踪正常。  相似文献   

18.
简要叙述了超级电容器的基本结构和工作原理,详细介绍了超级电容器的主要电参数和测试条件,分析了影响电特性的因素和机理,最后给出了超级电容器在独立光伏系统中的应用及注意事项。  相似文献   

19.
线形调频DDS及其误差分析   总被引:2,自引:0,他引:2  
采用DDS技术产生线形调频(chirp)信号是一种简单有效的方法,与其他方法相比,这种方法易于实现波形捷变,易于实现调频带较宽的chirp信号。然而产生过程引入了相位误差和幅度误差。这些误差将对脉冲压缩结果造成影响,在系统设计中必须设法控制。本文在分析用DDS实现chirp信号的原理的基础上,给出了chirp信号的DDS产生方案,该方法不用修改通用DDS的结构,便可实现各种参数chirp信号的产生。文中对误差进行了分析,给出工程实现上参数选取的依据。并讨论了这些误差对脉压系统性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号