首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Claudio Maccone   《Acta Astronautica》2006,58(12):662-670
A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth–Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement.The mathematical theory developed by the author in the years 2002–2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:
(1) the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);
(2) the asteroid's size and density (also supposed to be known from astronomical observations of various types);
(3) the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;
(4) the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;
(5) the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.
This discovery of the simple “asteroid deflection law” presented in this paper was possible because:
(1) In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.
(2) The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.
Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:
(1) taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
(2) adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
(3) encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.
In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself!We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.  相似文献   

2.
With the new cryogenic upper stage ESC, the European heavy launcher Ariane 5+ is perfectly suited to the space market envisioned for the coming decade: flexible to cope with any payload and commercially attractive despite a fierce competition.Current Arianespace projections for the following years 2010–2020 indicate two major trends:
• satellites may still become larger and may require very different final orbits; today's market largely dominated by GEO may well evolve, influenced by LEO operations such as those linked to ISS or by constellations,
• to remain competitive, the launch cost has to be reduced.
The future generation of the European heavy launcher has therefore to focus on an ever increased flexibility with a drastic cost reduction.Two strategies are possible to achieve this double goal:
• reusable launchers, either partially or totally, may ease the access to space, limiting costly expendable stages; the assessment of their technical feasibility and financial viability is undergoing in Europe under the Future Launchers Technology Program (FLTP),
• expendable launchers, derived from the future Ariane 5+.
This second way started by CNES at the end of year 1999 is called the “Ariane 2010 initiative”.The main objectives are simultaneously an increase of 25% in performance and a reduction of 30% in launch cost wrt Ariane 5+.To achieve these very ambitious goals, numerous major modifications are studied:
• technical improvements :
◦ modifications of the Solid Rocket Boosters may consist in filament winding casing, increased loading, simplified casting, improved grain, simplified Thrust Vector Control, …
◦ evolution of the Vulcain engine leading to higher efficiency despite a simplified design, flow separation controlled nozzle extension, propellant management of the two cryogenic stages,
◦ simplified electrical system,
◦ increased standardization, for instance on flanged interfaces and manufacturing processes,
• operational improvements such as launch cycle simplification and standardization of the coupled analyses,
• organizational improvements such as a redistribution of responsibilities for the developments.
All these modifications will of course not be implemented together; the aim is to have a coherent catalogue of improvements in order to enable future choices depending on effective requirements. These basic elements will also be considered for the development of other launchers, in the small or medium size range.  相似文献   

3.
Liquid rocket engines for launch vehicles and space crafts as well as their subsystems need to be verified and qualified during hot-runs. A high test cadence combined with a flexible test team helps to reduce the cost for test verification during development/qualification as well as during acceptance testing for production. Test facility intelligence allows to test subsystems in the same manner as during complete engine system tests and will therefore reduce development time and cost.This paper gives an overview of the maturing of test engineering know how for rocket engine test stands as well as high altitude test stands for small propulsion thrusters at EADS-ST in Ottobrunn and Lampoldshausen and is split into two parts:
• Part 1 gives a historical overview of the EADS-ST test stands at Ottobrunn and Lampoldshausen since the beginning of Rocket propulsion activities in the 1960s.
• Part 2 gives an overview of the actual test capabilities and the test engineering know-how for test stand construction/adaptation and their use during running programs.
Examples of actual realised facility concepts are given to demonstrate cost saving potential for test programs in both cases for development/qualification issues as well as for production purposes.

Article Outline

1. Introduction
2. Historical overview
2.1. Ottobrunn
2.1.1. Air-breathing propulsion
2.2. Lampoldshausen
2.2.1. Attitude control systems
2.2.2. Launcher Propulsion
3. Today's status of hot firing test facilities at Lampoldshausen
4. Test facility engineering know how
5. Conclusion and outlook
References

1. Introduction

Test facilities are an indispensable element for the development and acceptance of space systems/subsystems and components. Hot-test facilities especially with environment simulation (e.g., altitude simulation) are very unique and are specifically designed to their needs.In Germany rocket propulsion developments were started during the 1950s in Ottobrunn near Munich. Beginning in the 1960s developments of attitude control engines and thruster for space crafts were started in Lampoldshausen. In addition to these two plants with test facilities and test capabilities, a third centre with test facilities operated by ERNO in Trauen was built up for the development of the ELDO Launcher (Europa III).In the frame of the consolidation of the different Space Propulsion activities within Dasa (Daimler-Benz Aerospace) in the 1990s as well as the creation of EADS-Space, all test activities were concentrated to the Lampoldshausen site, concluded in 2000.Main reasons for this concentration to one test site were:
• One EADS-ST test-centre in Germany.
• One EADS-ST Test and Engineering Team at one location.
• Multi-use of the three EADS test fields in Lampoldshausen instead of 10 facilities.
• Experts with test engineering know how for development and production programs at one location.
• Synergy effects for test facility modification/maintenance and field support together with DLR.
In addition, cost aspects, especially for test conductions have to be reduced. Therefore, the facility and test requirements have been changed by:
• Using more intelligence in the design and features of the facility (e.g., several test objectives to be tested during one hot-firing test).
• Use of test data for computer simulations as code calibration and therefore reduction of the total number of needed tests.
• Multi-function of test specialists with the main goal to reduce the test team size.
• Computer aided test set-up, firing sequencing and online documentation.

2. Historical overview

2.1. Ottobrunn

A complete overview of all technologies created since the mid of the 1950s is given by Hopmann in [1]. Within this chapter the focus was set on technologies and know how generated in the frame of the Ariane cyrogenic developments at P 59 and air-breathing propulsion [2] and [3].The start of the ARIANE 1 programme and the contract for the development of the HM7-A thrust chamber called for a new facility complex. The erection of the P 59 Test facility was the first high-pressure thrust chamber facility in Europe with a storage level of 800 bars. This high pressure gas was needed to feed the 400 bar LH2 and LOX vacuum insulated run-tanks. For this facility also a special valve test facility was erected in order to test the facility valves in advance to their integration into the test bench (Fig. 1).  相似文献   

4.
This paper presents some research activities conducted at the Centre Spatial de Liege (CSL) in the field of space solar arrays and concentration.With the new generation of high efficiency solar cells, solar concentration brings new insights for future high power spacecrafts. A trade-off study is presented in this paper. Two different trough concentrators, and a linear Fresnel lens concentrator are compared to rigid arrays. Thermal and optical behaviors are included in the analysis.Several technical aspects are discussed:
• Off-pointing with concentrators induces collection loss and illumination non uniformity, reducing the PV efficiency.
• Concentrator deployment increases the mission risk.
• Reflective trough concentrators are attractive and already proven. Coating is made of VDA (Aluminum). A comprehensive analysis of PV conversion increase with protected silver is presented.
• Solar concentration increases the heat load on solar cells, while the conversion efficiency is significantly decreasing at warm temperatures.
To conclude, this paper will point out the new trends and the key factors to be addressed for the next generation of solar generators.  相似文献   

5.
The technical development trend of future launch vehicle systems is towards fully reusable systems, in order to reduce space transportation cost. However, different types of launch vehicles are feasible, as there are
• —winged two-stage systems (WTS)
• —ballistic single-stage vehicles (BSS)
• —ballistic two-stage vehicles (BTS)
The performance of those systems is compared according to the present state of the art as well as the development cost, based on the “TRANSCOST-Model”. The development costs are shown versus launch mass (GLOW) and pay-load for the three types of reusable systems mentioned above.It is shown that performance optimization and cost minimization lead to different results. It is more economic to increase the vehicle size for achieving higher performance, instead of increasing technical complexity.Finally it is described that due to the essentially lower launch cost of reusable vehicles it will be feasible to recover the development cost by an amortization charge on the launch cost. This possibility, however, would allow commercial funding of future launch vehicle developments.  相似文献   

6.
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
• new mission trajectories and concepts;
• operational command and control considerations;
• expected science, operational, resource utilization, and impact mitigation returns; and
• continued exploration momentum and future Mars exploration benefits.
Keywords: NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space  相似文献   

7.
8.
9.
In announcing a new Vision for the US space program, President George Bush committed the USA to “a long-term human and robotic program to explore the solar system”, via a return to the Moon, leading to exploration of Mars and other destinations. He also stated that other nations would be invited to join the vision. Many other nations have, or are developing, ‘exploration visions’ of their own. The potential for international cooperation therefore exists, both at the vision and program/project levels. This paper, based on Working Group discussions as part of an AIAA space cooperation workshop,1 presents an approach for maximizing the return on all global investments in space exploration. It proposes an international coordination mechanism through which all these various national activities could be integrated into an inherently global enterprise for space exploration, a ‘virtual program of programs’. Within the context of the coordination, individual activities would utilize the full range of cooperative mechanisms for implementation. A significant benefit of this mode of conducting cooperation is that it would not require the negotiation of complex overarching international agreements as a precondition for initiating international activity.  相似文献   

10.
11.
12.
13.
Space Phoenix     
《Space Policy》1988,4(2):143-150
The US federal government is collaborating with a non-profit university consortium and its commercial project managers to develop the Space Shuttle fleet's expended external fuel tanks for scientific and commercial uses in space. Nearly a half dozen years in evolution, the Space Phoenix Program is a private-sector civil space programme with the long-term goal of opening the Earth's space to as many people, organizations and activities as possible, as soon as possible, and at the lowest cost to them as possible. In time it is expected to be a major focus for private-sector activities in space. This report describes how it will work.  相似文献   

14.
15.
One hundred European university students, with different interests and backgrounds, were asked to complete a questionnaire aimed at understanding their general knowledge and personal rapport with space issues and activities. Although the overall interest in space seemed to be relatively satisfactory, the data resulting from the survey—used for statistical purposes only—showed a poor awareness concerning the past, present and future of space programmes and achievements, and more generally of the economic, political and social implications of space. Stimulated and moved by the survey questions, the students interviewed showed their worries about the already developing process of division, control and commercialisation of space, underlining how the concept of education is differentiated from that of information when dealing with these issues. However, at the same time, all their statements seemed to be based on simple assumptions, preconceptions and presumptions. On the basis of the survey results, the final section of the paper reviews and discusses the present situation of space education in Europe, analysing its deficiencies and suggesting modifications, adjustments and a “step forward” that should be taken into consideration.  相似文献   

16.
Future space systems, such as Columbus, the planned European contribution to the International Space Station, offer ample possibilities for microgravity research and application. These new opportunities require adequate user support on ground and novel operational concepts in order to ensure an effective utilization. Extensive experience in microgravity user support has been accumulated at DFVLR during the past Spacelab 1 and D1 missions. Based on this work, a Microgravity User Support Centre (MUSC) has been built and is active for the forthcoming EURECA-A1 and D2 missions, to form an integrated support centre for the disciplines life sciences and material sciences in the Space Station era. The objective of the user support at MUSC is to achieve:
• easy access to space experiments for scientific and commercial users,
• efficient preparation of experiments,
• optimum use of valuable microgravity experimentation time,
• cost reduction by concentration of experience.
This is implemented by embedding the MUSC in an active scientific environment in both disciplines, such that users can share the experience gained by professional personnel. In this way, the Space Station system is operated along the lines established on ground for the utilization of large international research facilities, such as accelerators or astronomical observatories. In addition, concepts are developed to apply advanced telescience principles for Space Station operations.  相似文献   

17.
For several years, the “BNM-Laboratoire Primaire du Temps et des Fréquences” has worked on a cold atom frequency standard. With a cesium atomic fountain a resonance line width of 700 mHz has been obtained leading to a short-term stability of 2 × 10−13 τ−1/2 down to 2 × 10−15 at 104 s. A first evaluation of the fountain accuracy has been performed resulting in an accuracy of 3 × 10−15, three times better than previously achieved with thermal beams frequency standards. In the atomic fountain, gravity limits the interaction time to ˜1 s, hence the resonance line width to ˜0.5 Hz. A factor of 10 reduction in the line width could be obtained in a micro-gravity environment. The “Centre National d'Etudes Spatiales” (the French space agency), the “BNM-Laboratoire Primaire du Temps et des Fréquences”, the “Laboratoire de l'Horloge Atomique” and the “Laboratoire Kastler Brossel” have set up a collaboration to investigate a space frequency standard using cold atoms: the PHARAO project. A microgravity prototype has been constructed and operated first in the reduced gravity of aircraft parabolic flights in May 1997. It is designed as a transportable frequency standard. The PHARAO frequency standard could be a key element in future space missions in fundamental physics such as SORT (solar orbit relativity test), detection of gravitational waves, or for the realization of a global time scale and a new generation of positioning system.  相似文献   

18.
Three orders of arguments are outlined to illustrate the importance of small missions. First, the classical reasons (one has to begin small, educational aspects, introduction to the space field) are summarized; then some thoughts are introduced on the efficacy and the efficiency of the effort invested (how expensive is a national project, and how advantageous the inevitable multinational cooperation); finally, a synopsis of the considerations about the need for cultural changes in the space program (the challenge of the coming era, the resulting needs, the philosophy of “small missions” and its contributions) is given.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号