首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.  相似文献   

2.
Primas  F. 《Space Science Reviews》1998,84(1-2):161-166
The boron 2500 spectral region has been observed with the Goddard High Resolution Spectrograph (GHRS) of the Hubble Space Telescope (HST) in a new set of metal-poor stars and analyzed by spectrum synthesis technique, adopting the most recent model atmospheres. By taking into account the Li and Be abundances available from the literature for this same set of objects, the resulting patterns of their light elements abundances cannot be easily justified with the currently known stellar structure scenarios. The finding of real differences in the B content between stars with very similar stellar characteristics suggest that also production effects, rather than depletion and/or mixing only, should be taken into account as a possible and valuable explanation.  相似文献   

3.
Recent spectroscopic results on stellar and solar abundances are reviewed with special reference to (a) Standard abundance distribution (Sun, hot stars, diffuse nebulae); (b) Abundance peculiarities related to stellar evolution (red giants showing results of H-burning and s-process, peculiar and metallic-lined stars); and (c) Population effects that may be related to the evolution of the Galaxy (correlation between stellar age and metal abundance, differences in details of heavyelement mixture in atmospheric composition of normal stars that have not reached an advanced evolutionary stage).  相似文献   

4.
Spite  F.  Spite  M.  Hill  V. 《Space Science Reviews》1998,84(1-2):155-160
The relation between the lithium abundance observed in Population II stars and the primordial abundance, is still an open question (see Cayrel and Duncan, this meeting). A few recent results are discussed. HIPPARCOS data show that the standard model of stellar evolution can explain the 6Li detection in HD 84937, suggesting a negligible depletion of 7Li. A slope in the Li/Teff relation for Pop II dwarfs and a spread of their Li abundance have been advocated, and both used as arguments in favor of Li depletion. The slope is not confirmed when two other independent temperature scales are used. The Li scatter around the plateau is hardly larger than the scatter predicted from determination errors. Hints from a scatter of Li in subgiants of the globular cluster M92 are not completely conclusive. The determination of more accurate Li abundances in the Pop II stars is an urgent but difficult task, requiring better model atmosphere (better convection treatment) and the help of observational data about Pop II stars (such as long base interferometry).  相似文献   

5.
Duncan  D. 《Space Science Reviews》1998,84(1-2):167-174

An overview of the discussions of the working group on Low-Z stars is presented. Key questions addressed include how the abundances of lithium observed in these stars should be compared to that produced in the Big Bang. Evidence for and against a small star-to-star variation in Li abundances is reviewed, and whether such a variation, if real, necessarily indicates that stellar depletion has occurred, necessitating correction to the value compared to primordial nucleosynthesis calculations. A second key question concerns how and where the light elements are produced. Taken together, their abundance ratios strongly suggest that in low-Z stars the light elements other than 7Li are produced by cosmic ray spallation. The most recent evidence suggests that a minority of this spallation happens in the general interstellar medium, and that a larger fraction might happen in the immediate vicinity of Supernovae, possibly producing observable star-to-star variation. Finally, the question of the overall metallicity of the Galaxy is discussed. How homogeneous in space and time is its evolution? Can we identify subsystems or individual stars which indicate a pregalactic contribution to the galactic metallicity?

  相似文献   

6.
We review the mechanisms which are thought to provide steady heating of chromospheres and coronae. It appears now fairly well established that nonmagnetic chromospheric regions of latetype stars are heated by shock dissipation of acoustic waves which are generated in the stellar surface convection zones. In the case of late-type giants there is additional heating by shocks from pulsational waves. For slowly rotating stars, which have weak or no magnetic fields, these two are the dominant chromospheric heating mechanisms.Except for F-stars, the chromospheric heating of rapidly rotating late-type stars is dominated by magnetic heating either through MHD wave dissipation (AC mechanisms) or through magnetic field dissipation (DC mechanisms). The MHD wave and magnetic field energy comes from fluid motions in the stellar convection zones. Waves are also generated by reconnective events at chromospheric and coronal heights. The high-frequency part of the motion spectrum leads to AC heating, the low frequency part to DC heating. The coronae are almost exclusively heated by magnetic mechanisms. It is not possible to say at the moment whether AC or DC mechanisms are dominant, although presently the DC mechanisms (e.g., nanoflares) appear to be the more important. Only a more detailed study of the formation of and the dissipation in small-scale structures can answer this question.The X-ray emission in early-type stars shows the presence of coronal structures which are very different from those in late-type stars. This emission apparently arises in the hot post-shock regions of gas blobs which are accelerated in the stellar wind by the intense radiation field of these stars.  相似文献   

7.
Based on radiation hydrodynamics modeling of stellar convection zones, a diffusion scheme has been devised describing the downward penetration of convective motions beyond the Schwarzschild boundary (overshoot) into the radiative interior. This scheme of exponential diffusive overshoot has already been successfully applied to AGB stars. Here we present an application to the Sun in order to determine the time scale and depth extent of this additional mixing, i.e. diffusive overshoot at the base of the convective envelope. We calculated the associated destruction of lithium during the evolution towards and on the main-sequence. We found that the slow-mixing processes induced by the diffusive overshoot may lead to a substantial depletion of lithium during the Sun's main-sequence evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The environments of both hot and cool stars are the sites of highly dynamic processes involving motion of gas and plasma in winds, flows across shocks, plasma motions in closed magnetic fields, or streams along magnetospheric accretion funnels. X-ray spectroscopy has opened new windows toward the study of these processes. Kinematics are evident in line shifts and line broadening, and also more indirectly through the analysis and interpretation of density-sensitive lines. In hot stellar winds, expanding-wind kinematics are directly seen in broadened lines although the broadening has turned out to often be smaller than anticipated, and some lines are so narrow that coronal models have been revived. Although X-ray spectra of cool stars have shown line shifts and broadening due to the kinematics of the entire corona, e.g., in binary systems, intrinsic mass motions are challenging to observe at the presently available resolution. Much indirect evidence for mass motion in magnetic coronae is nevertheless available. And finally, spectral diagnostics has also led to a new picture of X-ray production in accreting pre-main sequence stars where massive accretion flows collide with the photospheric gas, producing shocks in which gas is heated to high temperatures. We summarize evidence for the above mechanisms based on spectroscopic data from XMM-Newton and Chandra.  相似文献   

9.
10.
Element settling inside the Sun now becomes detectable from the comparison of the observed oscillation modes with the results of the theoretical models. This settling is due, not only to gravitation, but also to thermal diffusion and radiative acceleration (although this last effect is small compared to the two others). It leads to abundance variations of helium and heavy elements of ≅ 10% below the convective zone. Although not observable from spectroscopy, such variations lead to non-negligible modifications of the solar internal structure and evolution. Helioseismology is a powerful tool to detect such effects, and its positive results represent a great success for the theory of stellar evolution. Meanwhile, evidences are obtained that the element settling is slightly smoothed down, probably due to mild macroscopic motions below the convective zone. Additional observations of the abundances of both 7Li and 3He lead to specific constraints on these particular motions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ∼constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed “Spite-plateau” in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early “6Li plateau”, which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.  相似文献   

12.
The ultraviolet spectral images of thousands of faint stars, up to the 13th mag., in the wavelength region of 2000–5000 Å are obtained by means of the space astrophysical observatory Orion-2 aboard the spaceship Soyuz-13. These spectrograms were designed generally for an investigation of the continuous spectra of the stars in ultraviolet. The processing and measurement of part of the material available confirm the expectations for the solution of a large number of problems concerning the physics of stars and stellar atmospheres. Some of the results obtained are included in the present review. Particularly, the observed distribution of continuous energy in the ultraviolet of normal hot stars is in line, according to Orion-2 data, with theoretical prediction; the existence of a new type of high temperature (> 20000K) and low absolute luminosity stars is noticed; the blocking effect of the ultraviolet absorption lines expected for the A-type stars is confirmed; a number of empirical regularities concerning the behaviour of the ultraviolet doublet of ionized magnesium, 2800 Mg ii, in the stellar spectra are derived; the chromosphere in cold stars is detected; the role of a multiplet of ionized titanium, 3080 Ti ii, in stellar spectra is revealed; probably an abnormal silicon-rich stellar envelope around a Be-type star is discovered; a new method for the spectral classification of the stars by their ultraviolet spectral images is developed; a range of interesting facts relating to the structure of the ultraviolet spectra of middle type stars (F-K) come to the fore; an exceptional ultraviolet spectrogram for the planetary nebula II 2149 and its nuclei is obtained; the blocking effect of emission lines in the spectrum of the B-type emission and normal O-type stars has been detected; a remarkably faint (12itm.6) and high temperature star (No. 1) of strange spectral structure has been discovered.  相似文献   

13.
Empirical mass-loss rates were derived for 28 luminous O stars from radio fluxes and H equivalent widths. Comparison with theoretical values predicted by the theory of radiatively driven winds reveals a discrepancy of 0.30±0.05 dex, with the theoretical values being too low. We show that there is not only a mass-loss discrepancy but also a momentum flux discrepancy. The theoretically predicted momentum fluxes are too low by 0.17±0.04 dex. This discrepancy is independent of the adopted stellar mass. We demonstrate that the momentum discrepancy in the most luminous O stars is comparable to the one found in the least extreme Wolf-Rayet stars. We suggest that the physical reason for the break-down of the theory in Wolf-Rayet stars and the most luminous O stars may be related.  相似文献   

14.
For the evolution of the secondary component of a massive close binary system, it is generally assumed that the mass accretion during core H-burning simply leads to its rejuvenation, i.e. that it evolves like a normal main sequence star with a mass corresponding to its mass after the accretion ceased. We reinvestigate this problem in the framework of a time-dependent semiconvection theory. We find that the process of adaptation of the convective core size to the new (larger) stellar mass may not be completed until core hydrogen depletion, i.e. no rejuvenation occurs. The resulting secondaries show strong differences compared to single stars of same mass.  相似文献   

15.
The stellar Initial Mass Function (IMF) suggests that stars with sub-solar mass form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre–main-sequence (PMS) evolutionary phase, i.e., they have not started their lives on the main-sequence yet. The peculiar nature of these objects and the contamination of their samples by the fore- and background evolved populations of the Galactic disk impose demanding observational techniques, such as X-ray surveying and optical spectroscopy of large samples for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the metal-poor companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of the above techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope within the last five years yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of star-forming regions in these galaxies, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of the PMS stellar content of the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.  相似文献   

16.
魏诗卉  杨春伟  刘炳琪  王继平  苏国华 《航空学报》2020,41(8):623734-623734
针对星光折射模型本身固有的缺点,对星光折射连续修正方法进行了研究,该方法首先探索折射星的分布规律,而后采用Unscented卡尔曼滤波算法+多星连续观测的方案实现定位。同时,对可用星与选星要素和基于突防规划的星光制导弹道设计两方面进行了研究,在星光制导制约机理研究的基础上,提出了惯性/星光制导规划方法,该方法包括导航星的优选策略、导航星优选技术和星点位置的精确计算3步。最后,介绍了星光制导系统的系统组成和功能原理。  相似文献   

17.
The Be stars     
Classical Be stars are defined and their relationship to normal B-type stars stated. Spectral classification of the underlying stars suggests that, on the average, Be stars are located 0.5–1.0 magnitude above the main sequence. Struve's rotational model for Be stars, and several tests which support the model, are reviewed. The best evidence at this time suggests that Be stars may not rotate with the critical velocity at which centrifugal force just balances the equatorial gravitational force, but a number of mechanisms for getting material out into the shell have been proposed and are discussed.The physical characteristics of Be shells were first derived from optical observations of shell stars, supplemented more recently by ultraviolet, infrared, radio, and polarization measurements. These data suggest that Be shells are probably lenticular with radii 3 to 20 times the radius of the underlying star, excitation temperatures lower than those of the reversing layers, and electron densities in the range 1010-1013 cm-3.Variability of Be stars, from spectroscopic, photometric, and polarimetric observations, seems well established over time scales of years and months, but the evidence for night-to-night and hourly changes is somewhat conflicting. Of special interest are recent X-ray observations of several Be stars.Models for the envelopes of Be stars are reviewed, including state-state stellar wind models, time-dependent stellar wind models, the elliptical ring model, disk models, and binary models. Finally, the evolutionary status of Be stars is discussed, and some recommendations for future work made.  相似文献   

18.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds.  相似文献   

19.
Astrometry is the major astronomical technique to measure distances, masses and motions of stars. Dividing astrometric techniques into five types according to the size of the field in which a single instrument can produce measurements, the present achievements of the Earth-based astrometry are described. The astrometric activities such as measurements of star diameters, double star relative positioning or stellar parallaxes, search for invisible companions, photographic plate reduction, visual and photoelectric meridian and astrolable astrometry are reviewed. Then, the methods used to construct a quasi-inertial celestial reference frame and to materialize it by a fundamental catalogue are presented and discussed. A much better definition of an absolute reference frame is made possible by VLBI, but the problem of extending it to stellar positions is not yet satisfactorily resolved.The limitations of the ground based astrometry are: the atmospheric turbulence and refraction, Earth's motions and the impossibility to view the entire sky with a single instrument. These limitations are discussed and it is shown how astrometry from space can overcome them. A priori, a gain of two orders of magnitudes in accuracy for all types of astrometry is expected, but at this new level of precision, new effects and limitations will appear, as already shown in the studies of the approved programs.Then, the ESA astrometric satellite HIPPARCOS presently under development is presented. The satellite and the payload are described as well as the observing procedures. Several limitations, specific to space borne instrumentation and to the milliarc second accuracy expected have been identified. However the main limitation in precision remains the photon noise. The data reduction methods are sketched. The data downlinked at a rate of 20 kilobits per second have to be used with an equal weight all over the 21/2 years of observation. They are expected to yield a mean accuracy of 2 milliarc seconds in position and parallax and 2 m.a.s. per year in proper motion for most of the 100000 stars of the program (M b < 9). Stars to be observed by HIPPARCOS have to be carefully selected. The main fields in which the results of HIPPARCOS will be used are listed from the proposals made by the scientific community. The task of constructing the HIPPARCOS input catalogue from these proposals is presented.Another feature of the ESA astrometric satellite is the use of the HIPPARCOS star-mapper as a photometric and position survey of the sky. This experiment, called TYCHO, should give at least 400000 star positions with accuracies of the order of 0.03 to 0.15 depending upon the magnitudes. Two colour instantaneous magnitudes should also be obtained to 0.1–0.4 mag. precision.Several Space-Telescope on-board instruments are also capable to make small field astrometric observations. Accurate imaging is possible with the Wide Field and the Faint Object cameras. Lunar occultations will be performed with the High Speed photometer. But the main astrometric mode of the Space Telescope will be the use of the Fine Guidance Sensors to measure the relative positions of stars to ±0.002. It is described together with its main scientific applications.The establishment of an absolute reference frame is subsequently discussed. Plans using simultaneously VLBI, HIPPARCOS, and Space Telescope observations are described. They consist in linking the HIPPARCOS stellar system to quasars via radio-stars or stars in the vicinity of optical quasars.Finally, several space astrometry proposals are described: long focus space astrometry and two versions of space interferometry.  相似文献   

20.
The high temperature sensitivity of thermonuclear reactions and the neurrino emission at the final stages of stellar evolution (urca process) are the most crucial Gamow's contribution to the physics and evolution of stars. G. Gamow made one of a few first attempts in astrophysics to get a comprehensive picture of stellar evolution from the main sequence (thenormal stars in his terminology) through the formation of white dwarfs, gravitational collapse of stellar cores and supernova explosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号