首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
可燃喷管固体火箭发动机具有成本低、可靠性高等优点,可用作运载火箭助推器,本文对它的性能进行了初步探索。理论计算的内弹道曲线及喷管型面与实验结果基本一致,实验结果表明,该发动机的比冲稍低于钢喷管发动机的比冲;喷喉圆柱段的燃速比收敛段和扩散段的燃速高,燃烧规律也不相同。  相似文献   

2.
喷管收敛段与喉部型面对喷管流量的影响   总被引:4,自引:0,他引:4  
用Fluent计算流体力学软件对固体火箭发动机喷管流场进行了数值计算,研究了喷管收敛半角,喷管喉部上游圆弧曲率半径长喉部圆柱段长度对喷管流场的影响,研究结果表明,喷管喉部圆柱段长度对流量影响不大,喷管流量随喷管收敛半角的增大而减小,喷管流量随喷管喉部上游圆弧半径的增大而增大。所提供的结论可供喷管设计人员参考。  相似文献   

3.
采用轴对称无粘流动模型,计算固体火箭发动机喷管喉部上,下游曲率半径和圆柱长度对发动机比冲,喉部流量和推力效率的影响,经与实验数据比较,证明该方法可行。研究结果得出喷管喉部型面应是具一定大小的上,下游曲率半径,并有一较短的圆柱段。文中提供的喉部型面参数的一般取值范围可供设计参考。  相似文献   

4.
本文介绍了在喷管超音速段有气体沿切向缝隙喷注的火箭发动机喷管流场计算方法,同时还提供了无喷注的喷管流场计算。计算结果与试验数据相符,证明该计算方法有效。文中对发生器气体喷入实际发动机超音速段的喷管流场进行了分析,分析中假设使用了两类推进剂:氧/氢、氧/甲烷,以氧/氢和氧/甲烷的燃烧产物作为发生器气体。数值计算结果表明,在喷管超音速段有气体喷注的情况下,由于粘性引起的真空比冲损失比没有喷注的喷管损失小。  相似文献   

5.
大型固体发动机潜入式喷管背壁区域熔渣沉积数值模拟   总被引:2,自引:0,他引:2  
考虑凝相颗粒间的相互作用以及颗粒和发动机壁面之间的碰撞,建立了固体发动机潜入式喷管背壁区域熔渣沉积数值计算模型,并针对某大型固体发动机内熔渣形成过程开展了数值计算。结果表明,该计算模型具有较高的计算精度,计算结果可信;熔渣的沉积主要是由颗粒之间相互作用而形成的大尺寸颗粒与喷管潜入段内壁面碰撞并发生黏附而形成的;喷管潜入段入口处药柱燃面的形状对潜入段内熔渣的沉积过程具有一定影响。  相似文献   

6.
采用有限元素法对固体火箭发动机喷管扩张段进行了刚度特性分析,并从刚度出发提出了控制喷管推力方向的作动力方向的优化问题。最后,对某发动机喷管进行了分析。  相似文献   

7.
孙永奇  李宝荣  杨建文 《火箭推进》2013,39(4):13-18,45
上面级发动机采用四氧化二氮/偏二甲肼为推进剂,将涡轮排气引入推力室喷管气膜冷却喷管延伸段.仿真计算和热试车表明:推力室主燃气与涡轮排气压力在同一截面处相等,涡轮排气沿喷管延伸段壁面流动形成紧贴喷管壁面的气膜,对主燃气无扰动,对喷管延伸段起到冷却保护作用.推力室喷管延伸段传热计算值和热试车延伸段温度测量值吻合,排气集合器内压力基本均匀,满足工程应用需要.  相似文献   

8.
利用FLUENT流场计算软件,对采用潜入和非潜入喷管的全尺寸固体发动机,采用二维轴对称模型和准定常方法进行了内流场模拟计算和对比分析.结果表明,喷管潜入结构可有效地降低发动机后封头壁面附近的燃气速度,从而比非潜入发动机有更好的热防护环境;两种发动机在燃烧室内压强、速度和温度分布大致相同,非潜入喷管发动机在喷管出口轴线处燃气速度比潜入喷管发动机的大,而温度和压强较低.  相似文献   

9.
本文用有限元法计算和分析了由多种各向异性材料组成的复合喷管的应变—应力场,计算中所用的原始数据采用定型数据,计算结果与发动机地面试车实测的动应变基本相符,所编制的计算机程序可用来计算发动机喷管工作期间由任一种载荷引起的应变—应力场。  相似文献   

10.
某固体火箭发动机点火启动过程三维流场一体化仿真   总被引:2,自引:0,他引:2  
以某固体发动机的燃烧室和喷管为一体化研究对象,采用三维流场控制方程,应用有限体积法计算了发动机点火启动过程中燃烧室和喷管内燃气的流场特性。发动机药柱上的着火点最初出现在药柱星角尖上,然后向四周扩展;在药柱点火初期,燃气压力波先于火焰峰到达喷管;随着燃烧室内燃气压力升高,压力沿轴向分布逐渐平缓;当喷管进口压力与出口背压比达到某一值时,喷管扩张段内出现一道激波,随着压力比的升高,激波最终移出喷管,燃气流速在喷管出口处达到最大值。  相似文献   

11.
为了获得偏置斜切喷管主要结构参数对发动机推力特性的影响规律,采用内弹道计算方法,通过对比不同喷管结构参数下发动机的推力特性,研究了喷管斜切角度和喷管扩张半角对发动机推力及推力偏斜角的影响规律。结果表明,随着发动机斜切角度的增大,发动机轴向推力略有增大,仅增大1%,发动机径向推力和推力偏斜角减小明显,分别减小28%和100%,且几乎呈线性关系;随着喷管扩张半角的增大,发动机轴向推力明显增大,增幅为14.8%,推力偏斜角显著减小,降幅为29.1%,而发动机径向推力略有增大,但仅增大1.2%。此外,喷管斜切部分产生的发动机轴向推力可能为负推力,即在斜切部分产生的轴向推力小于零,在发动机设计过程中应该重点关注,以期实现喷管结构的优化设计。  相似文献   

12.
采用MacCormark格式与特征线法联合的方法求解了固体火箭发动机喷管两相流场。在跨音速段,气相控制方程用基于MacCormark格式的时间相关法求解,粒子方程采用跟踪粒子轨迹的特征线法求解;在超音速段,气相控制方程用MacCormark两步显格式空间步进求解,粒子方程仍采用跟踪粒子轨迹的特征线法求解,两相充分偶合。在控制方程中考虑了三氧化二铝颗粒的相变。最后对JPL喷管进行了计算,并讨论了不同质量分数对流场的影响。  相似文献   

13.
为分析主喷管角度对塞式喷管性能的影响,对两种塞式喷管实验发动机进行了热试和冷流试验。试验结果表明,主喷管倾角对发动机喷管效率、底部压强与燃烧室压强之比的影响明显,且存在一个性能最优的最佳倾角。热试和冷流实验发动机主喷管倾角为20°时,喷管效率最高。  相似文献   

14.
采用半经验法计算了固体火箭发动机喷管的效率,即用计算流场的方法确字喷管二维两相流损失和边界层损失,用SPP经验法预示了喷管的化学动力学损失,喷管烧蚀损失和喷管潜入损失。利用该方法对几个实际固体火箭发动机喷管效率进行了计算,计算结果与实际结果比较符合,精度偏差在1%之内。  相似文献   

15.
受外廓尺寸限制的火箭发动机喷管设计以及能产生最大推力的喷管造型等问题,在过去的几十年里已引起了不少研究者的注意。最近发现,在喷管的出口流场的控制面上引入“不连续性”,可以减少喷管长度。本报告给出了喷管型面的计算和推力性能比较。这里提及的控制面包括两区域,内区包含超音速膨胀流,其速度和流动方向角是随半径增大而增大的。外区包含受喷管型面影响的流场,它呈现出随半径增大而流动方向角交小的特征。在内外区的接合处,引入流动方向上的不连续性和相应的速度等熵变化,通过等熵压缩波在此接合面处相交实现“跳跃”。在控制面的上游,流动保持等熵。在本报告中所示的计算方法表明,喷管长度的减少量,是与跳跃的大小和沿控制面的位置相关联的。可以想象,只需少量的推力性能损失就可实现喷管长度的大幅度减少。这种设计观点最有希望应用在空间发动机的设计中。  相似文献   

16.
火箭发动机工作是极复杂的物理化学过程,在喷管内气体的为三维、多相、粘怀、化学反应、跨声速流动。预估发动机的性能时,不仅要计算多相流损失、粘性、扩散损失,还要计算由于化学反应引起的化学动力学损失等,这就要对喷管内的各种流动现象作仔细的计算分析。本文采用Nakahashi半隐格式,用时间相关法计算了一维和轴对称喷管跨声速化学反应非平衡流场,得到了正确合理的结果,在跨声速喷管化学反应流仿真计算上作了初步  相似文献   

17.
珠承全轴摆动喷管的设计和分析   总被引:1,自引:0,他引:1  
介绍了固体火箭发动机推力向量控制珠承全轴摆动喷管的结构方案和结构分析,论述了珠承接头的设计计算方法,评述了珠承全轴摆动喷管的优缺点和在固体火箭发动机上的应用前景.  相似文献   

18.
采用时间相关法计算了旋转发动机的喷管气相流场,内部点使用 MacCormack 二步显格式,对入口边界和固壁边界点的参数计算,除采用了物理边界条件外,还采用了参考平面上的特征方程,计算结果表明:旋转效应沿着喷管轴向逐渐减弱,当转速不很高时,旋转对气相流场参数分布影响不大,可近似按不旋转计算;当转速很高时,应考虑旋转效应。  相似文献   

19.
用双室串并固体火箭发动机测定由于喷管倒置引起的损失,以及用吸气式流动试验观察燃烧室内囚喷管倒置形成的流动特点。对于用双基药的实验发动机,喷管倒置150°引起的推力损失约1.8%。气流在燃烧室内有很大扰动,在倒置喷管进口附近有涡流和分离现象。  相似文献   

20.
固体火箭发动机喷管的沉积不仅影响发动机工作性能也影响喷管壁表面和壁内的温度随时间的变化规律,本文根据沉积过程的传热模型计算了三氧化二铝在固体火箭发动机喷管喉部的沉积速率,与实验结果相符合,并计算了在沉积过程中喷管壁内温度分布随时间的变化过程,数值计算表明,在沉积的初始阶段由于凝相粒子所释放的热量将增加向喷管壁内的传热,温度上升比没有沉积时要快,随着沉积层的加厚逐渐阻挡气相向喷管壁的传热,而使壁内的温度随时间的增加有一个峰,理论与实验结论一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号