首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we discuss the combined use of a priori information and adaptive signal processing techniques for the design and the analysis of a knowledge-aided (KA) radar receiver for Doppler processing. To this end, resorting to the generalized likelihood function (GLF) criterion (both one-step and two-step), we design and assess data-adaptive procedures for the selection of training data. Then we introduce a KA radar detector composed of three elements: a geographic-map-based data selector, which exploits some a priori information concerning the topography of the observed scene, a data-adaptive training selector which removes dynamic outliers from the training data, and an adaptive radar detector which performs the final decision about the target presence. The performance of the KA algorithm is analyzed both on simulated as well as on real radar data collected by the McMaster University IPIX radar. The results show that the new KA system achieves a satisfactory performance level and can outperform some previously proposed adaptive detection schemes  相似文献   

2.
The average likelihood ratio detector is derived as the optimum detector for detecting a target line with unknown normal parameters in the range-time data space of a search radar, which is corrupted by Gaussian noise. The receiver operation characteristics of this optimum detector is derived to evaluate its performance improvement in comparison with the Hough detector, which uses the return signal of several successive scans to achieve a non-coherent integration improvement and get a better performance than the conventional detector. This comparison, which is done through analytic derivations and also through simulation results, shows that the average likelihood ratio detector has a better performance for different SNR values. This result is justified by showing the disadvantages of the Hough method, which are eliminated by the optimum detector. To have an estimate for the location of the detected target line in the optimum detection method as the Hough method, which detects and localizes the target lines simultaneously, we present the maximum a posteriori probability estimator. The estimation performance of the two methods is then compared and it is shown that the maximum a posteriori probability estimator localizes the detected target lines with a better performance in comparison with the Hough method.  相似文献   

3.
4.
We consider the problem of detecting a stochastic signal in white not-necessarily-Gaussian noise, using vector valued observations. The locally optimal detector is presented and its performance evaluated. The least-favorable signal spectrum and noise density (over specified classes) are found, and it is shown that the detector using these least-favorable assumptions is minimax robust. The class of spectra is that of any stochastic signal of specified power whose spectrum can be bounded from above and from below by two given positive functions. The class of densities is the ε-contamination model. We present examples of the performance achievable with the robust detector in one of these the spectral uncertainty class corresponds to the unknown Doppler shift of a radar return signal. It is demonstrated that the standard matched-filter's performance degradation with increasing Doppler shift can be avoided almost entirely through use of the robust processor  相似文献   

5.
We present a new method for automatic target/object classification by using the optimum polarimetric radar signatures of the targets/objects of interest. The state-of-the-art in radar target recognition is based mostly either on the use of single polarimetric pairs or on the four preset pairs of orthogonal polarimetric signatures. Due to these limitations, polarimetric radar processing has been fruitful only in the area of noise suppression and target detection. The use of target separability criteria for the optimal selection of radar signal state of polarizations is addressed here. The polarization scattering matrix is used for the derivation of target signatures at arbitrary transmit and receive polarization states (arbitrary polarization inclination angles and ellipticity angles). Then, an optimization criterion that minimizes the within-class distance and maximizes the between-class metrics is used for the derivation of optimum sets of polarimetric states. The results of the application of this approach on real synthetic aperture radar (SAR) data of military vehicles are obtained. The results show that noticeable improvements in target separability and consequently target classification can be achieved by the use of the optimum over nonoptimum signatures  相似文献   

6.
A CFAR adaptive matched filter detector   总被引:3,自引:0,他引:3  
An adaptive algorithm for radar target detection using an antenna array is proposed. The detector is derived in a manner similar to that of the generalized likelihood-ratio test (GLRT) but contains a simplified test statistic that is a limiting case of the GLRT detector. This simplified detector is analyzed for performance to signals on boresight, as well as when the signal direction is misaligned with the look direction  相似文献   

7.
A frequent compromise in the design of long-range search radars has to be made between the maximum unambiguous detection range and the achievable coherent clutter rejection performance. A new class of waveforms is introduced which offers the designer a previously unavailable flexibility in arriving at radar designs with improved clutter rejection without seriously affecting the maximum unambiguous search range. The key to these new waveforms is the recognition that a class of useful N-pulse, nonrecursive, moving target indicator (MTI) canceler designs exists which only requires the radar to transmit a total of N -1 (nonuniformly spaced) pulses.  相似文献   

8.
In automatic radar detection, digital integration of the envelope detector outputs is often used as a good approximation to the optimum. This requires quantizing the envelope detector outputs. In this paper, quantizer structures for narrowband signal detection are considered. Quantizer characteristics are derived to optimize performance as measured by the detector efficacy?an asymptotic performance measure. Asymptotic and finite sample performance results are presented. The results obtained are not limited in their application to Gaussian noise only, although this important case is given specific consideration.  相似文献   

9.
相参雷达典型干扰信号产生及关键技术   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了一种基于DRFM的相参雷达典型干扰样式信号产生方法,并对其关键技术进行了研究。该干扰信号能够携带雷达发射信号的相位等细微特征信息,可以用于在实验室条件下对相参雷达进行抗干扰性能测试。  相似文献   

10.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

11.
The optimum rank detector structure, in the Neyman-Pearson sense and under Gaussian noise conditions, is approximated by a suboptimum structure that depends on an adjustable parameter. This new rank detector, which operates on radar video signal, includes other well-known detectors as particular cases. The asymptotic relative efficiency (ARE) of the proposed rank detector is computed, with its maximum value the ARE of the locally optimum rank detector (LORD). The detection probability versus signal-to-noise ratio, and the effects of interfering targets are also calculated by Monte-Carlo simulations for different parameter values.  相似文献   

12.
Synthetic aperture radar(SAR)image is severely affected by multiplicative speckle noise,which greatly complicates the edge detection.In this paper,by incorporating the discontinuityadaptive Markov random feld(DAMRF)and maximum a posteriori(MAP)estimation criterion into edge detection,a Bayesian edge detector for SAR imagery is accordingly developed.In the proposed detector,the DAMRF is used as the a priori distribution of the local mean reflectivity,and a maximum a posteriori estimation of it is thus obtained by maximizing the posteriori energy using gradient-descent method.Four normalized ratios constructed in different directions are computed,based on which two edge strength maps(ESMs)are formed.The fnal edge detection result is achieved by fusing the results of two thresholded ESMs.The experimental results with synthetic and real SAR images show that the proposed detector could effciently detect edges in SAR images,and achieve better performance than two popular detectors in terms of Pratt's fgure of merit and visual evaluation in most cases.  相似文献   

13.
The ability to detect the presence or absence of a target is no longer the fundamental design criterion when the vehicle to be tracked is cooperative. In spacecraft tracking or navigation systems, for example, emphasis is placed on post-acquisition performance. Therefore, classical radar theory and design techniques are not specifically applicable. On the other hand, there are optimization techniques for extracting the tracking data from noise that are more to the point. In particular, optimum demodulation theory is directed specifically to the problem of continuously extracting data from a nonlinear modulation process. In this paper, the tracking properties of a multitone PM ranging signal are reviewed and are shown to be nearly optimum for cooperative vehicles. An optimum, but nonrealizable, maximum a posteriori (MAP) continuous estimator of range is derived for this signal. The linearized model of this receiver is the optimum nonrealizable Wiener filter for the data. Interpretation of this optimum nonrealizable estimator leads to a receiver design that is both practical and intuitively satisfying. With the aid of post-detection processing in the Wiener-Hopf sense, almost optimum performance is obtained from the resulting receiver, above threshold.  相似文献   

14.
Georgia Tech Research Institute (GTRI) has developed a millimeter wave safety warning system for in-vehicle signing for use in the nation's Intelligent Transportation System (ITS, formerly IVHS). The Safety Warning System TU (SWS) utilizes a homodyne radar that operates at 24.1 GHz as both a radar and a system to transmit highway safety messages. The warning message is received by a police radar detector or stand-alone safety warning receiver without radar detector capability. When the message is received, it is displayed to the driver via an alphanumeric light emitting diode (LED) display. The message can also be announced by a voice synthesizer internal to the receiver or by a flashing LED labeled “SWS.” The system is designed to inform the driver that he or she is being overtaken by a police car or emergency vehicle in motion. When the police car or emergency vehicle stops, the radar transmitter senses that the platform is no longer moving and the system automatically changes its message to warn approaching drivers of a stationary hazard ahead. A second safety warning transmitter deployment concept is to mount the unit near the highway at a fixed location. The fixed location SWS is designed to be programmable and transmit any one of 64 fixed text messages  相似文献   

15.
Consider the design of a minimum dwelltime set of coherent, range-unambiguous pulse bursts that will provide a specified target detection performance in a clutter-free ("clear") range interval [Rmin,Rmax]. Practical procedures are presented here for finding these optimal waveform sets versus Rmax/Rmin, subject to a peak transmit power constraint. It is always possible to design a multiple-PRF clear mode that achieves the same effective use of energy as a single-PRF waveform with a 33 percent duty ratio. Slightly higher effective duty ratios can be achieved if the radar is capable of transmitting and processing two interleaved pulse bursts at the same PRF.  相似文献   

16.
The research reported herein deals with the general problem of the selection of radar waveforms. The investigation is specifically concerned with the synthesis of radar signals which are optimum in the sense that they are characterized by ambiguity surfaces minimized over certain predetermined regions of the ambiguity plane. The weighted ambiguity surface is utilized as the weighted error criterion. This error criterion is mathematically tractable and pertinent to radar system performance but is not unduly restrictive as some orientation parameters are left unspecified for subsequent cost or penalty function analysis. The signal optimization is approached by variational techniques augmented by equality and inequality constraints, for example, limiting the amount of bandwidth or frequency modulation to be less than some system requirement. Several examples are presented demonstrating the optimization techniques and providing a minimum error for the stated problem. It is shown that for any given type of amplitude modulation of the radar signal, the variance or dispersion of the ambiguity surface is not decreased for any type of phase modulation added. The optimum signal for an elliptical weighting function is derived for several cases. The minimum error is shown to depend upon the constraints and the unspecified orientation parameters and, for one case, on the second moment of the signal.  相似文献   

17.
Two classes of coherent radar types are analyzed to ascertain whether any significant advantages exist for a given system. The classes compared are those coherent radars which transmit a phasecoherent pulse-to-pulse RF carrier as opposed to those which transmit randomly phased RF carriers but store the coherent information at the radar for Doppler extraction. Rigorous new analytical development is avoided in favor of examination of the considerable existing literature, examination of practical limitations, and synthesis of generic solutions from key concepts. Examination is made of coherent radar classes from the viewpoints of reconnaissance ance and intelligence measurement, new radar design and devlopment, and electronic countermeasures vulnerability. The conclusion that the classes of coherent radars examined have a priori and a posteriori equivalent performance has significant implications not published in any reference source.  相似文献   

18.
The optimum detector for a random signal, the estimator-correlator, is difficult to implement. If the power spectral density (PSD) of a continuous time signal is known, a locally optimum detector is available. It maximizes the deflection ratio (DR), a measure of the detector output signal-to-noise ratio (SNR). A discrete version of this detector is developed here, called the discrete-MDRD, which takes a weighted sum of the spectral components of the signal data as the detection statistic. Its derivation is applicable to nonwhite noise samples as well. A comparison of this new detector against three other common types, through their DR values and simulation results, reveals that the discrete-MDRD is near optimal at low SNRs. When the PSD of a signal is not known, a common test statistic is the peak of the PSD of the data. To reduce spectral variations, the PSD estimator first divides the data sequence into several segments and then forms the averaged PSD estimate. The segment length affects the DR values; the length that maximizes the DR is approximately the reciprocal of the signal bandwidth. Thus for unknown signal PSD, a detector that approaches the maximum DR is realizable from just the knowledge of the signal bandwidth, which is normally available. Examples and simulation results are provided to illustrate the properties and performance of the new detector  相似文献   

19.
Maximum likelihood angle extractor for two closely spaced targets   总被引:2,自引:0,他引:2  
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor  相似文献   

20.
The PRSD detector improves radar performance by controlling the distribution of energy in space, thus making a radar adaptive to its environment. An increase in performance over classical detectors may be realized in any of several ways: 1) greater maximum range; 2) smaller minimum detectable targets; 3) higher data rates; 4) lower average transmitted power, which allows smaller size and weight of equipment. The model of the PRSD detector described herein was tested with a semi-agile beam radar, and gave measured field performance improvement (for this particular radar) equivalent to an S/N increase ranging from 5 to 22 dB with a mean of 9.5 dB. This increase is greater than the 5-dB improvement predicted for the system in a white noise environment because many of the field tests were at locations subjected to heavy interference. The PRSD detector was extremely effective reducing the interference. In this paper, we will briefly review the theory of operation, describe the equipment and the method of test, and present experimental data. The data presented here are essential to a complete understanding of sequential detection since a rigorous theory encompassing multiple range bin radar has not been developed at this time. Finally, an extensive bibliography is appended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号