首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Several recent results concerning the nature of the Earth's magnetotail are briefly reviewed. These observational findings include: (1) the three-dimensional character of the plasma sheet via a comprehensive survey of proton bulk flows, (2) a region of earthward flowing plasmas at the interfaces of the plasma sheet and magnetotail lobes during magnetic substorm recovery, and (3) the signature of electrostatic acceleration for protons within the jetting plasmas from magnetotail fireballs.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

2.
The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included.  相似文献   

3.
Nishida  A. 《Space Science Reviews》2000,91(3-4):507-577
Geomagnetic field lines that are stretched on the nightside of the Earth due to reconnection with the interplanetary magnetic field constitute the Earth's magnetotail. The magnetotail is a dynamic entity where energy imparted from the solar wind is stored and then released to generate disturbance phenomena such as substorms. This paper gives an updated overview on the physics of the magnetotail by drawing heavily from recent research conducted with the GEOTAIL satellite. It summarizes firstly the basic properties of the magnetotail such as shape, size and magnetic flux content, internal motion and plasma regimes. Then it describes characteristics of tail plasmas of the solar-wind and the ionosphere origins. Thirdly it addresses acceleration and heating of plasmas in the magnetotail, where reconnection between the stretched field lines is the main driver but the site of the acceleration is not limited to the immediate vicinity of the neutral line. In the collisionless regime of the plasma sheet kinetic behaviors of ions and electrons control the acceleration process. The paper closes by enumerating the problems posed for future studies.  相似文献   

4.
The S-302 experiment has benefited more than most from the non-geostationary nature of the GEOS-1 orbit in so far as additional regions of quite different thermal and suprathermal plasmas were made accessible. Electron and positive ion spectra from three regions, the plasmasphere, plasmatrough and boundary layer, are described in order to highlight the variety of thermal plasmas observed.We show how, even in the presence of the local photoelectron sheath and its associated electric potential, the thermal characteristics can be derived. The success of this technique during active periods is demonstrated by the observation of both a heating of the thermal population and the appearance of a second field aligned thermal component during a period of intense wave activity.The detailed structure of the boundary layer adjacent to the magnetopause as observed on the 2nd December, 1977 shows only slow systematic development over a period of more than an hour. Where the thermal plasma density peaks the suprathermal positive ions show considerable drift motion as well as non-Maxwellian characteristics. This region is identified from the thermal particle data as being very close to the magnetopause, however, whether in fact the magnetopause was crossed requires corroborative data from the magnetometer and other experiments.  相似文献   

5.
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.  相似文献   

6.
This article summarizes and aims at comparing the main features of the induced magnetospheres of Mars, Venus and Titan. All three objects form a well-defined induced magnetosphere (IM) and magnetotail as a consequence of the interaction of an external wind of plasma with the ionosphere and the exosphere of these objects. In all three, photoionization seems to be the most important ionization process. In all three, the IM displays a clear outer boundary characterized by an enhancement of magnetic field draping and massloading, along with a change in the plasma composition, a decrease in the plasma temperature, a deflection of the external flow, and, at least for Mars and Titan, an increase of the total density. Also, their magnetotail geometries follow the orientation of the upstream magnetic field and flow velocity under quasi-steady conditions. Exceptions to this are fossil fields observed at Titan and the near Mars regions where crustal fields dominate the magnetic topology. Magnetotails also concentrate the escaping plasma flux from these three objects and similar acceleration mechanisms are thought to be at work. In the case of Mars and Titan, global reconfiguration of the magnetic field topology (reconnection with the crustal sources and exits into Saturn??s magnetosheath, respectively) may lead to important losses of plasma. Finally, an ionospheric boundary related to local photoelectron signals may be, in the absence of other sources of pressure (crustal fields) a signature of the ultimate boundary to the external flow.  相似文献   

7.
The Earth's magnetopause is the boundary between a hot tenuous plasma in the magnetosphere and a cooler denser plasma in the magnetosheath. Both of these plasmas contain magnetic fields whose directions are usually different but whose magnitudes are often comparable. Efforts to understand the structure of the magnetosphere have been hampered by the variability and complexity of this boundary. Waves on the magnetopause surface propagate toward the magnetotail and produce the multiple boundary crossings frequently seen by spacecraft. Boundary velocities are poorly known and range anywhere within an order of magnitude of 10 km s–1. Typical thicknesses are probably on the order of a few hundred km which is a few times the gyroradius of a thermal proton. Although conclusive direct evidence for a field component, B n , across the magnetopause has not been found, this lack of evidence may reflect the difficulty in determining B n in the presence of magnetopause waves rather than the real absence of this component. Considerable indirect evidence exists for an open magnetosphere, but the importance of the reconnection process thought to produce open field lines has recently been questioned.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

8.
Many significant wave phenomena have been discovered at Venus with the plasma wave instrument flow on the Pioneer Venus Orbiter. It has been shown that whistler-mode waves in the magnetosheath of the planet may be an important source of energy for the topside ionosphere. Plasma waves are also associated with thickening of the ionopause current layer. Current-generated waves in plasma clouds may provide anomalous resistance resulting in electron acceleration, possibly producing aurora. Ion-acoustic waves are observed in the bow shock, and appear to be a feature of the magnetotail boundary. Lastly plasma waves have been cited as evidence for lightning on Venus.  相似文献   

9.
Scholer  M.  Treumann  R. A. 《Space Science Reviews》1997,80(1-2):341-367
This is a brief overview on what we know and do not know about the low-latitude boundary layer (LLBL) at the flanks of the magnetotail. On the basis of recent observations, simulations and theories we conclude that reconnection is the dominant process in generating the LLBL and its structure probably even under northward IMF conditions. Part of the LLBL always seems to be on open field lines. Possibly the LLBL possesses a double structure with its outer part open and inner part closed. Anomalous diffusive processes cannot sustain the LLBL but provide sufficient diffusivity for reconnection. Strong diffusion is only expected in narrow localized regions and can make the transition to superdiffusion. Kelvin-Helmholtz instability (KHI) is favoured for northward IMF, producing vortices at the tail flanks. Its contribution to efficient mass transport still remains questionable. Coupling of the LLBL to the ionosphere can strongly affect the internal structure of the LLBL, causing turbulent eddies and detachments of plasma blobs as also field-aligned currents and electron heating. The structure and dynamics of the LLBL are affected by field-aligned electric potentials that decouple the LLBL from the ionosphere. Non-ideal coupling simulations suggest that the dusk flank is decoupled, favouring KHI, while the dawn flank is dominated by currents and turbulence.  相似文献   

10.
Fujimoto  M.  Terasawa  T.  Mukai  T. 《Space Science Reviews》1997,80(1-2):325-339
GEOTAIL observations of the low-latitude boundary layer (LLBL) in the tail-flanks show that they are the region where the cold-dense plasma appears with stagnant flow signatures accompanied by bi-directional thermal electrons (< 300 eV). It is concluded from these facts that the tail-LLBL is the site of capturing the cold-dense plasma of the magnetosheath origin on to the closed field lines of the magnetosphere. There are also cases that strongly suggest that the cold-dense plasma entry from the flanks can be significant to fill a substantial part of the magnetotail. In such cases, the cold-dense plasma is not spatially restricted to a layer attached to the magnetopause (that is, the LLBL), but continues to well inside the magnetotail, constituting the cold-dense plasma sheet. Inspired by the fact that these remarkable cases are found for northward interplanetary magnetic field (IMF), a statistical study on the status of the near-Earth plasma sheet is made. The results show that the plasma sheet becomes significantly colder and denser when the northward IMF continues than during southward IMF periods, and that the cold-dense status appears most prominently near the dawn and dusk flanks. These are consistent with the idea that, during northward IMF periods, the supply of cold-dense ions to the near-Earth tail from the flanks dominates over the hot-tenuous ions transported from the distant tail.  相似文献   

11.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   

12.
Consequences of the solar wind input observed as large scale magnetotail dynamics during substorms are reviewed, highlighting results from statistical studies as well as global magnetosphere/ionosphere observations. Among the different solar wind input parameters, the most essential one to initiate reconnection relatively close to the Earth is a southward IMF or a solar wind dawn-to-dusk electric field. Larger substorms are associated with such reconnection events closer to the Earth and the magnetotail can accumulate larger amounts of energy before its onset. Yet, how and to what extent the magnetotail configuration before substorm onset differs for different solar wind driver is still to be understood. A strong solar wind dawn-to-dusk electric field is, however, only a necessary condition for a strong substorm, but not a sufficient one. That is, there are intervals when the solar wind input is processed in the magnetotail without the usual substorm cycle, suggesting different modes of flux transport. Furthermore, recent global observations suggest that the magnetotail response during the substorm expansion phase can be also controlled by plasma sheet density, which is coupled to the solar wind on larger time-scales than the substorm cycle. To explain the substorm dynamics it is therefore important to understand the different modes of energy, momentum, and mass transport within the magnetosphere as a consequence of different types of solar wind-magnetosphere interaction with different time-scales that control the overall magnetotail configuration, in addition to the internal current sheet instabilities leading to large scale tail current sheet dissipation.  相似文献   

13.
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

14.
15.
16.
Electric currents permeate space plasmas and often have a significant component along the magnetic field to form magnetic flux ropes. A larger spatial perspective of these structures than from the direct observation along the satellite path is crucial in visualizing their role in plasma dynamics. For magnetic flux ropes that are approximately two-dimensional equilibrium structures on a certain plane, Grad-Shafranov reconstruction technique, developed by Bengt Sonnerup and his colleagues (see Sonnerup et al. in J. Geophys. Res. 111:A09204, 2006), can be used to reveal two-dimensional maps of associated plasma and field parameters. This review gives a brief account of the technique and its application to magnetic flux ropes near the Earth’s magnetopause, in the solar wind, and in the magnetotail. From this brief survey, the ranges of the total field-aligned current and the total magnetic flux content for these magnetic flux ropes are assessed. The total field-aligned current is found to range from ∼0.14 to ∼9.7×104 MA, a range of nearly six orders of magnitude. The total magnetic flux content is found to range from ∼0.25 to ∼2.3×106 MWb, a range of nearly seven orders of magnitude. To the best of our knowledge, this review reports the largest range of both the total field-aligned current and the total magnetic flux content for magnetic flux ropes in space plasmas.  相似文献   

17.
18.
This paper reviews major developments in our understanding of the physics of energetic heavy ions in the Earth's plasma environment during the past four years (1974–1977). Emphasis is placed on processes that influence or are influenced by the ion charge states. This has been a period of growing awareness of the important role heavy ions play in space plasmas. Large fluxes of helium ions and even heavier ions have been observed at the geostationary altitude and in the heart of the radiation belts. Such ions have also been observed on low latitude rockets and satellites, and oxygen ion precipitation exceeding that of protons has been reported. In the outer parts of the Earth's plasma envelope there is mounting evidence for significant fluxes of heavy ions: in the magnetotail, the magnetosheath and in the polar cusp regions. In the inner magnetosphere there is a limited theoretical understanding of equatorially mirroring ions, but generally only radial diffusion at one pitch angle and pitch angle diffusion at one L- shell have been studied; for ions the coupled equations are yet unsolved even for the simplest case of only one charge state (protons). Theoretical modeling of the charge state structures of geophysical heavy ion populations is in part frustrated by the lack of adequate laboratory measurements of the pertinent charge exchange cross sections. A first attempt has, however, been made to treat the charge state transformation processes in the radiation belts for equatorially mirroring atomic oxygen ions. Wave-particle interactions in the magnetosphere become much more complex in multi component and multi charge state plasmas where hybrid resonances and wave-particle interaction induced non-linear species-species coupling could be important. Heavy ion plasma physics in the Earth's magnetosphere and in the magnetospheres of other planets should be a field of fruitful study for both experimentalists and theoreticians in the years ahead.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

19.
Chang  Tom  Tam  Sunny W.Y.  Wu  Cheng-Chin  Consolini  Giuseppe 《Space Science Reviews》2003,107(1-2):425-445
The first definitive observation that provided convincing evidence indicating certain turbulent space plasma processes are in states of ‘complexity’ was the discovery of the apparent power-law probability distribution of solar flare intensities. Recent statistical studies of complexity in space plasmas came from the AE index, UVI auroral imagery, and in-situ measurements related to the dynamics of the plasma sheet in the Earth's magnetotail and the auroral zone. In this review, we describe a theory of dynamical ‘complexity’ for space plasma systems far from equilibrium. We demonstrate that the sporadic and localized interactions of magnetic coherent structures are the origin of ‘complexity’ in space plasmas. Such interactions generate the anomalous diffusion, transport, acceleration, and evolution of the macroscopic states of the overall dynamical systems. Several illustrative examples are considered. These include: the dynamical multi- and cross-scale interactions of the macro-and kinetic coherent structures in a sheared magnetic field geometry, the preferential acceleration of the bursty bulk flows in the plasma sheet, and the onset of ‘fluctuation induced nonlinear instabilities’ that can lead to magnetic reconfigurations. The technique of dynamical renormalization group is introduced and applied to the study of two-dimensional intermittent MHD fluctuations and an analogous modified forest-fire model exhibiting forced and/or self-organized criticality [FSOC] and other types of topological phase transitions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Onsager  T.G.  Lockwood  M. 《Space Science Reviews》1997,80(1-2):77-107
Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号