首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of adaptive radar detection in clutter which is nonstationary both in slow and fast time is addressed. Nonstationarity within a coherent processing interval (CPI) often precludes target detection because of the masking induced by Doppler spreading of the clutter. Across range bins (i.e., fast time), nonstationarity severely limits the amount of training data available to estimate the noise covariance matrix required for adaptive detection. Such difficult clutter conditions are not uncommon in complex multipath propagation conditions where path lengths can change abruptly in dynamic scenarios. To mitigate nonstationary Doppler spread clutter, an approximation to the generalized likelihood ratio test (GLRT) detector is presented wherein the CPI from the hypothesized target range is used for both clutter estimation and target detection. To overcome the lack of training data, a modified time-varying autoregressive (TVAR) model is assumed for the clutter return. In particular, maximum likelihood (ML) estimates of the TVAR parameters, computed from a single snapshot of data, are used in a GLRT for detecting stationary targets in possibly abruptly nonstationary clutter. The GLRT is compared with three alternative methods including a conceptually simpler ad hoc approach based on extrapolation of quasi-stationary data segments. Detection performance is assessed using simulated targets in both synthetically-generated and real radar clutter. Results suggest the proposed GLRT with TVAR clutter modeling can provide between 5–8 dB improvement in signal-to-clutter plus noise ratio (SCNR) when compared with the conventional methods.  相似文献   

2.
自适应阵列(或称自适应波束形成)目前已广泛应用到雷达、声纳和通信领域中用来抑制各种干扰(有意的干扰,杂波干扰和多用户干扰等)。在雷达应用中,为了减轻脉冲欺骗式干扰或旁瓣目标并利用单脉冲雷达来准确测量目标波达方向.要求自适应方向图具有低副瓣和稳定的主瓣形状。在实际应用中,各种失配误差将降低自适应阵列的性能.这些误差包括由于目标的波达方向不精确引起的信号指向误差,由通道失配和位置扰动引起的阵列校准误差和由小样本教引起的协方差矩阵估计误差。在此情况下,自适应波束形成的性能大大下降(干扰抑制性能变差。主瓣失真和高的副瓣)。已提出了一种基于二次约束的集成峰值副瓣控制(integrated peak sidelobe control,简称IPSC)方法。该方法可以精确地控制峰值副瓣电平并产生具有稳定的主瓣形状的自适应方向图。研究IPSC中目标信号的影响和信号消除方案以进一步提高IPSC的性能。并将IPSC方法和最新提出的基于二阶锥规划(second-order cone programming,简称SOCP)的分布式峰值副瓣控制(distfibuted peak sidelobe control,简称为DPSC)新方法在性能上进行了比较。仿真结果表明。在干扰抑制性能和方向图控制质量方面IPSC比DPSC性能优越。此外IPSC比DPSC计算高效。  相似文献   

3.
Two schemes for adaptive detection are compared: Kelly's generalized likelihood ratio test (GLRT) and the mean level adaptive detector (MLAD). Detection performance, PD, is predicted for the two schemes under the assumptions that the input noises are zero-mean complex Gaussian random variables that are temporally independent but spatially correlated; and the amplitude of the desired signal is Rayleigh distributed. PD is computed as a function of the false alarm probability, the number of input channels, the number of independent samples per channel, and the matched filtered output signal-to-noise (S/N) power ratio. In this analysis the GLRT is shown to have better detection performance than the MLAD. The difference in detection performance increases as one uses fewer input samples. However, the required number of samples necessary to have only a 3 dB detection loss for both detection schemes is approximately the same. This is significant since for the present, the MLAD is considerably less complex to implement than the GLRT  相似文献   

4.
A CFAR adaptive matched filter detector   总被引:3,自引:0,他引:3  
An adaptive algorithm for radar target detection using an antenna array is proposed. The detector is derived in a manner similar to that of the generalized likelihood-ratio test (GLRT) but contains a simplified test statistic that is a limiting case of the GLRT detector. This simplified detector is analyzed for performance to signals on boresight, as well as when the signal direction is misaligned with the look direction  相似文献   

5.
The parametric Rao test for a multichannel adaptive signal detection problem is derived by modeling the disturbance signal as a multichannel autoregressive (AR) process. Interestingly, the parametric Rao test takes a form identical to that of the recently introduced parametric adaptive matched filter (PAMF) detector for space-time adaptive processing (STAP) in airborne surveillance radar systems and other similar applications. The equivalence offers new insights into the performance and implementation of the PAMF detector. Specifically, the Rao/PAMF detector is asymptotically (for large samples) a parametric generalized likelihood ratio test (GLRT), due to an asymptotic equivalence between the Rao test and the GLRT. The asymptotic distribution of the Rao test statistic is obtained in closed form, which follows an exponential distribution under the null hypothesis H 0 and, respectively, a noncentral Chi-squared distribution with two degrees of freedom under the alternative hypothesis H 1. The noncentrality parameter of the noncentral Chi-squared distribution is determined by the output signal-to-interference-plus-noise ratio (SINR) of a temporal whitening filter. Since the asymptotic distribution under H 0 is independent of the unknown parameters, the Rao/PAMF asymptotically achieves constant false alarm rate (CFAR). Numerical results show that these results are accurate in predicting the performance of the parametric Rao/PAMF detector even with moderate data support.  相似文献   

6.
Importance sampling for characterizing STAP detectors   总被引:1,自引:0,他引:1  
This paper describes the development of adaptive importance sampling (IS) techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing (STAP) algorithms. Fast simulation using IS methods has been notably successful in the study of conventional constant false alarm rate (CFAR) radar detectors, and in several other applications. The principal objectives here are to examine the viability of using these methods for STAP detectors, develop them into powerful analysis and design algorithms and, in the long term, use them for synthesizing novel detection structures. The adaptive matched filter (AMF) detector has been analyzed successfully using fast simulation. Of two biasing methods considered, one is implemented and shown to yield good results. The important problem of detector threshold determination is also addressed, with matching outcome. As an illustration of the power of these methods, two variants of the square-law AMF detector that are thought to be robust under heterogeneous clutter conditions have also been successfully investigated. These are the envelope-law and geometric-mean STAP detectors. Their CFAR property is established and performance evaluated. It turns out the variants have detection performances better than those of the AMF detector for training data contaminated by interferers. In summary, the work reported here paves the way for development of advanced estimation techniques that can facilitate design of powerful and robust detection algorithms  相似文献   

7.
GLRT subspace detection for range and Doppler distributed targets   总被引:7,自引:0,他引:7  
A generalized likelihood ratio test (GLRT) is derived for adaptive detection of range and Doppler-distributed targets. The clutter is modeled as a spherically invariant random process (SIRP) and its texture component is range dependent (heterogeneous clutter). We suppose here that the speckle component covariance matrix is known or estimated thanks to a secondary data set. Thus, unknown parameters to be estimated are local texture values, the complex amplitudes and Doppler frequencies of all scattering centers. To do so, we use superresolution methods. The proposed detector assumes a priori knowledge on the spatial distribution of the target and has the precious property of having a constant false alarm rate (CFAR) with the assumption of a known speckle covariance matrix or by the use of frequency agility.  相似文献   

8.
An approach to knowledge-aided covariance estimation   总被引:1,自引:0,他引:1  
This paper introduces a parametric covariance estimation scheme for use with space-time adaptive processing (STAP) methods operating in heterogeneous clutter environments. The approach blends both a priori knowledge and data observations within a parameterized model to capture instantaneous characteristics of the cell under test (CUT) and reduce covariance errors leading to detection performance loss. We justify this method using both measured and synthetic data. Performance potential for the specific operating conditions examined herein include: 1) averaged behavior within roughly 2 dB of the optimal filter, 2) 1 dB improvement in exceedance characteristic relative to the optimal filter, highlighting improved instantaneous capability, and 3) impervious ness to corruptive target-like signals in the secondary data (no additional signal-to-interference-plus-noise ratio (SINK) loss, compared with 10 dB or greater loss for the standard STAP implementation), with corresponding detections comparable to the optimal filter case  相似文献   

9.
A sampling-based approach to wideband interference cancellation   总被引:1,自引:0,他引:1  
Classical adaptive array schemes which use only complex spatial weights are inherently narrowband and consequently perform poorly when attempting to suppress wideband interference. The common solution to this problem is the use of tapped delay line filters in each spatial channel to facilitate space-time adaptive processing (STAP). The higher performance provided by the STAP architecture comes at the cost of a considerable increase in complexity. This paper presents a simpler technique based on programmable time adjustable sampling (TAS) that provides a limited number of wideband degrees of freedom. Two TAS methods are introduced: TAS-sidelobe canceler (TAS-SLC) is based on the sidelobe canceler, while TAS-minimum variance beamformer (TAS-MVB) is derived from the minimum variance beamformer. TAS is implemented by adjusting the sampling instant at selected array channels. TAS-SLC consists of controlling the sampling in the main channel of the sidelobe canceler With TAS-MVB array complex weights are substituted with TAS time delays. The performance of TAS methods with wideband interference is compared to the conventional sidelobe canceler and minimum variance beamformers. It is shown that TAS-SLC provides better performance than the sidelobe canceler, while TAS-MVB outperforms the minimum variance beamformer  相似文献   

10.
Physical modeling of the Doppler centroid (DC) can be used to predict synthetic aperture radar (SAR) Doppler ambiguity when antenna attitude is controlled or measured precisely enough. It is shown that the same model proves useful even in the cases of higher attitude uncertainty, if it is combined with suitable adaptive techniques. In this paper, Doppler ambiguity resolution is formulated as a hypothesis testing problem over a domain of integer values that are directly related to the attitude uncertainty. A test statistic is derived from the entire SAR scene using data adaptive processing. A broad class of such adaptive algorithms is analyzed in a unified way, starting from the range-azimuth coupling in the frequency domain and multilook techniques. The analysis includes two well-known and two new multilook methods for Doppler ambiguity resolution. A suitable test statistic is proposed for each of these methods and its dependency on the scene spatial correlation is discussed. Experimental results confirm the robustness of the combined scheme.  相似文献   

11.
Deals with the problem of detecting subspace random signals against correlated non-Gaussian clutter exploiting different degrees of knowledge on target and clutter statistical characteristics. The clutter process is modeled by the compound-Gaussian distribution. In the first part of the paper, the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector are sequentially derived both for the Gaussian and the compound-Gaussian scenarios. Different interpretations of the various detectors are provided to highlight the relationships and the differences among them. In particular, we show how the GLRT detector may be recast into an estimator-correlator form and into another form, namely a generalized whitening-matched filter (GWMF), which is the GLRT detector against Gaussian disturbance, compared with a data-dependent threshold. In the second part of this paper, the proposed detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters.  相似文献   

12.
For pt. I see ibid., vol. 38, no. 4, p. 1295 (2002). In this second part we deal with the problem of detecting subspace random signals against correlated non-Gaussian clutter modeled by the compound-Gaussian distribution. In the first part of the paper, we derived the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector; we also provided some interesting interpretations of them. In this second part, these detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters. Numerical examples concern a space-time adaptive processing (STAP) scenario and a ground-based surveillance radar system scenario.  相似文献   

13.
Adaptive detection using low rank approximation to a data matrix   总被引:1,自引:0,他引:1  
Using an accurate formula for the error in approximating a low rank component, we calculate the performance of adaptive detection based on reduced-rank nulling. In this principal component inverse (PCI) method, one temporarily regards the interference as a strong signal to be enhanced. The resulting estimate of the interference waveform is subtracted from the observed data, and matched filtering is used to detect signal components in the residual waveform. We also present a generalized likelihood-ratio test (GLRT) for adaptively detecting a low rank signal in the presence of low rank interference. This approach leads to a test which is closely related to the PCI method and extends the PCI method to the case where strong signal components are present in the data. A major accomplishment of the work is our calculation of the statistics of the output of the matched filter for the case in which interference cancellation and signal detection are carried out on the same observed data matrix. That is, no separate data is used for adaptation. Examples are presented using both simulated data and real, active-sonar reverberation data from the ARSRP, the Acoustic Reverberation Special Research Program of the Office of Naval Research  相似文献   

14.
We address the estimation of the structure of the covariance matrix and its application to adaptive radar detection of coherent pulse trains in clutter-dominated disturbance modeled as a compound-Gaussian process. For estimation purposes we resort to range cells in spatial proximity with that under test and assume that these cells, free of signal components, can be clustered into groups of data with one and the same value of the texture. We prove that, plugging the proposed estimator of the structure of the covariance matrix into a previously derived detector, based upon the generalized likelihood ratio test (GLRT), leads to an adaptive detector which ensures the constant false alarm rate (CFAR) property with respect to the clutter covariance matrix as well as the statistics of the texture. Finally, we show that this adaptive receiver has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications  相似文献   

15.
Performance results for the sidelobe level of a compressed pulse that has been preprocessed through an adaptive canceler are obtained. The adaptive canceler is implemented using the sampled matrix inversion algorithm. Because of finite sampling, the quiescent compressed pulse sidelobe levels are degraded due to the preprocessing of the main channel input data stream (the uncompressed pulse) through an adaptive canceler. It is shown that if N is the number of input canceler channels (main and auxiliaries) and K is the number of independent samples per channel, then K/N can be significantly greater than one in order to retain sidelobes that are close to the original quiescent sidelobe level (with no adaptive canceler). Also it is shown that the maximum level of degradation is independent of whether pulse compression occurs before or after the adaptive canceler if the uncompressed pulse is completely contained within the K samples that are used to calculate the canceler weights. This same analysis can be used to predict the canceler noise power level that is induced by having the desired signal present in the canceler weight calculation  相似文献   

16.
17.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

18.
GLRT Detectors for Aircraft Wake Vortices in Clear Air   总被引:1,自引:1,他引:0  
 In this article, radar echoes of aircraft wake vortices are modeled as weighted sums of the frequency components of the echoes with a special covariance matrix for the weighted coefficients. With a proposed detection scheme, two generalized likelihood ratio test (GLRT) detectors are derived respectively for aircraft wake vortices with time-varying and time-invariant Doppler spectra. Then the analytical expressions for detection and false alarm probabilities of the detectors are derived and three factors are investigated which mainly influence the detection performance, i.e., the Doppler extension and uncertainty of the aircraft wake vortex, and the number of the detection cells. The results indicate that, the signal-to-noise ratio (SNR) loss induced by Doppler extension is generally several decibels. The SNR loss due to Doppler uncertainty is approximately proportional to the logarithm of the number of spectrum lines in the uncertain Doppler spectrum intervals. For a large number of detection cells, the SNR gain is approximately proportional to the square root of the number of the detection cells.  相似文献   

19.
The derivation of a completely adaptive polarimetric coherent scheme to detect a radar target against a Gaussian background is presented. A previously proposed Generalized Likelihood Ratio Test (GLRT) polarimetric detector is extended to the case of a general number of channels; this exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. Together with the fully adaptive scheme, a model-based detector is derived that has a lower estimation loss. A complete theoretical expression is derived for the detection performance of both proposed polarimetric detectors. They are shown to have Constant False Alarm Rate (CFAR) when operating against Gaussian clutter, but to be sensitive to deviations from the Gaussian statistic. The application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

20.
STAP for clutter suppression with sum and difference beams   总被引:1,自引:0,他引:1  
A unique approach for airborne radar clutter rejection is developed and evaluated. This spatial and temporal adaptive approach employs the sum and difference beams of an antenna, which has significant practical advantages because it can be implemented with no/little change to the front-end electronics of airborne systems where sum and difference beams already exist for other reasons. The low sidelobe implementation of many sum and difference beam systems and the low gain of the difference beam in the direction of the target gives this approach the potential in many radars for a more predictable response pattern. The impact of these factors is shown in an airborne clutter rejection demonstration where the performance of this approach is compared with that of the factored approach (FA) using additional spatial channels and that of conventional pulse-Doppler (PD) processing. Reliable detection of an injected target is only achieved by this approach  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号