首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
七十年代初,日本宇宙开发事业团(NASDA)便着手研制具有发射中型应用卫星能力的N系列三级运载火箭。自1975年以来,该团曾在种子岛宇宙中心用N-I火箭成功地将五颗重达130公斤的卫星送入地球同步轨道。从1981年2月起,N-I火箭的改进型N-Ⅱ火箭也成功地进行了试射,同年8月便发射了气象卫星。从此N系列火箭就进入了发射应用卫星的阶段。为了满足日本各卫星用户所提出的发射大容量应用卫星的要求,日本宇宙开发事业  相似文献   

2.
目前气象卫星向日葵、通信卫星樱花、广播卫星百合花等实用卫星都用N—Ⅱ火箭发射。随着空间利用的发展,将来需要发射更大型的卫星,为此日本宇宙开发事业团研制了N—Ⅱ火箭的后继型H-1火箭。预定在1986年发射二级式、1987年发射三级式的试验火箭。试验证实H-1确有发射大型卫星的能力之后,预计在1990年前开始用于发射实用卫星。  相似文献   

3.
许勃 《中国航天》1993,(12):22-24
从历史的角度来看,运载火箭的尺寸和有效载荷能力呈现出不断增大的趋势,日本也不例外。日本有两个机构目前正在研制大型火箭。日本宇宙开发事业团即将发射的H—2火箭将主要用于发射新型应用卫星,而日本宇宙航空科学研究所正在研制的M—5火箭将用于发射新型科学卫星。在这种情况下,这两个机构都认为,利用现有的固体火箭技术研究小型运载器不仅很容易实现,而且也将是有益的。正是基于这种考虑,日本宇宙开发事业团在宇宙航空科学研究所的协助下开始了J—1小型运载火箭的研制工作。  相似文献   

4.
H-Ⅱ运载火箭的研制计划已于1985年4月正式开始。它是一种新型的一次使用的、可满足九十年代航天需要的运载火箭,拟将完全由日本独立研制。该火箭地球同步轨道的运载能力为2吨。H-Ⅱ火箭预定于1992年发射日本的第四代卫星。H-Ⅱ火箭具有以下设计特点:1)一箭多星发射结构,多数任务是一箭双星发射,每星重量为1吨;2)新运载火箭尽量选用了 H-Ⅰ火箭的研制经验;3)设计结构简  相似文献   

5.
日本宇宙开发委员会(SAC)展望了日本2000年以前的宇宙开发活动,正式通过了宇宙开发大纲。该大纲要求发射50颗应用卫星和研制新的运载火箭,其中包括 H-1火箭的改进型 H-2火箭。该大纲还要求发射几颗1990公斤级的应用卫星和28颗科学卫星。另外,日本参加美国空间站的研究项目也已获得批准。为了支持上述项目,日本政府已经在1985财年预算中批准了6.45亿美元的经费,其中包括宇宙开发事业团(NASDA)的5.3  相似文献   

6.
各国运载火箭介绍;J-1(日本)孙广勃日本有两个航天机构负责研制和使用运载火箭。宇宙开发事业团主管的是液体系列,包括已退役的N1、N2、H1和目前正在使用的H-2;宇宙科学研究所则负责发展M系列团体运载火箭。H-2火箭主要将用于发射新型应用卫星,而正...  相似文献   

7.
日本正在加紧进行 H-1运载火箭的研制工作,以便用它发射用户迫切需要的大容量通讯卫星。H-1是一枚三级运载火箭,它可以把重550公斤的同步通讯卫星送入轨道。日本打算 H-1火箭在1986年研制成功后,用它取代现正使用的 N-Ⅱ火箭(该火箭同步  相似文献   

8.
概述“德尔它”Ⅱ中型运载火箭发射商用载荷的情况.“德尔它”系列火箭的特点是可靠性很高.航天飞机的失事,使美国重新考虑起用一次性使用运载火箭.“德尔它”Ⅱ便能满足90年代卫星商业市场的需求,经过不断改进,它最终能将1450—1800kg的载荷送上地球同步轨道.详细介绍“德尔它”Ⅱ的性能与各级的结构特点,及火箭目前的研制状况.  相似文献   

9.
1974年日本宇宙开发事业团研制出一种N—Ⅰ型运载火箭。这是能发射130公斤同步卫星的三级火箭。1975年9月9日用N—Ⅰ成功地发射了一枚Ⅰ型(ETS-Ⅰ)「菊」技术试验卫星,至80年陆续发射了六枚卫星。其中,电离层观测卫星(ISS)「梅」,实验用同步通信卫星(ECS-b)「菖蒲2号」由于卫星的故障均未成功。还有实验用同步通信卫星(ECS)「菖蒲」号由于火箭的第3级与卫星分离机构的故障也未能达到预期的目的。1977年2月23日日本首次成功地发射了一枚同步卫星—技术实验卫星Ⅱ型(ETS-Ⅱ)「菊花2号」。  相似文献   

10.
为了满足以低成本发射大型卫星的要求,日本宇宙开发事业团正在研制H-Ⅱ运载火箭,以作为其90年代的主要运载工具。目前,宇宙开发事业团正在进行该火箭的D阶段的研究和进行多种类型的研制试验。1988年已开始制造H-Ⅱ的地面试验型火箭(GTV)和第一枚飞行型(FM)火箭,第一次试飞计划在1992年初进行。本文将详细介绍H-Ⅱ火箭的设计和研制现状。  相似文献   

11.
一、引言阿里安(ARIANE)火箭,是欧洲空间局(ESA)正在研制的大型运载火箭。研制阿里安火箭的主要目的,是为了自八十年代起发射西欧各国的各类应用卫星,使西欧摆脱在空间技术方面受美帝欺侮、控制的局面,并能与美帝争夺国际市场。1973年7月31日正式决定研制,予计1980年底前完成鉴定性飞行试验;当前已进入地面大型综合试验阶段。  相似文献   

12.
日本运载火箭获得成功SFU的H2运载火箭在头两次发射中已取得成功,由于研制问题特别是运载火箭的LE7第一级低温发动机,首次发射推迟了两年多。第一次完全是日本本国产的、大型的、液体推进剂运载火箭HZ是作为日本空间计划的骨干火箭而设计的,并也由三菱公司下...  相似文献   

13.
法国航天研究中心(CNES)提出研制—种从阿里安5派生的经济的多用途小型固体运载火箭。这种火箭具有多种刑号:重量为110~140吨的轻型火箭能发射1~1.7吨有效载荷;重量为390~420吨的“重型”火箭能发射3.5~5.4吨有效载荷(见图1)。CNES把这个项口暂时定名为DLA(阿里安5的派生运载火箭),一旦决定研制,便称其为阿里安6。  相似文献   

14.
由日本气象厅出资、三菱电机公司研制的向日葵-8气象卫星于日本时间2014年10月7日使用三菱重工的H-IIA-25火箭成功发射。向日葵-8是向日葵-7的下一代气象卫星,设计寿命、气象观测能力都有大幅提高,经在轨性能试验后计划于2015年正式使用,替代于2006年发射的向日葵-7。日本气象厅从1978年开始运用向日葵卫星进行气象观测,共成功发射8颗向日葵卫星。利用向日葵卫星监  相似文献   

15.
H-I火箭简介     
1983年2月和8月日本用主力火箭N-Ⅱ从种子岛发射了一组(两颗)同步通信卫星(樱花2号a和b)。N-Ⅱ火箭能发射350公斤重的同步卫星。H-Ⅰ火箭将成为日本1985~1990年的主力火箭,它能发射550公斤重的同步卫星。H-Ⅰ火箭可以说是日本开始独立研制(尽管其中有些部分仍是仿制)大型火箭的里程碑,因为以前的N-Ⅰ和N-Ⅱ火箭的国产率仅50~60%,包括H-Ⅰ在内的第Ⅰ级部是从美国引进的,但日本对H—Ⅰ进行了一些改进,即第Ⅱ  相似文献   

16.
为了大幅度降低大型运载火箭的发射费用,提高发射效率,日本宇宙开发事业团于1995年开始研制H-2A系列运载火箭,并对H-2火箭吉信发射场进行了较大规模的改装、扩建。本文对H-2A火箭吉信发射场主要设备的建设、装备进展状况进行了较系统的论述。  相似文献   

17.
日本的航天事业是从1951年固体火箭的研究开发开始发展起来的,至今已有40余年的历史,经历了从试验到研制、从探空、微重力试验到卫星发射应用的过程,取得了令人瞩目的成就。同时,日本还引进国外先进的火箭技术,发展大型固体助推火箭,以实现大型卫星的发射。在消化吸收国外火箭技术的基础上,日本目前正在全力自行研制H-2大型运载火箭,包括其所用的固体助推火箭,准备用这种火箭发射希望号航天飞机。此外,日本在未来固体火箭的大型化、无公害化、降低成本以及采用新材料和新技术等方面也正在进行研究开发。以下对日本固体火箭技术的发展历程作简单的介绍。  相似文献   

18.
日本正在火箭发动机试验中心新建的设备中进行先进火箭系统的研制工作,这些火箭系统将使日本在21世纪具备发射大型新卫星的能力。宇宙开发事业团(NASDA)和国家宇航实验室(NAL)分别管理角田地区的两个研究中心的各项火箭试验活动。H-1和H-2火箭用的氢氧发动机是这两个单位联合研制的。日本航天飞机所需的可重复使用的火箭发动机和21世纪的重型运载火箭用的空气冲压—火箭发动机的各种新技术也正在  相似文献   

19.
1994年2月4日,日本成功地发射了第一枚 H—Ⅱ运载火箭。这次发射成功预示着日本的宇航事业美好的发展前景。H—Ⅱ运载火箭将做为日本九十年代到下世纪初的主要空间运载系统。它最显著的技术特点主要体现在它的第一级发动机 LE—7和第二级发动机 LE—5A。这两种发动机均以液氢为燃料,液氧为氧化剂。独特的发动机设计特点,使得 H—Ⅱ运载火箭跻身于世界航天技术行列中并成为其中的佼佼者。LE—7和LE—5A 是以 LE—5发动机的技术为基础发展起来的。LE—5发动机是完全依靠日本技术研制出的第一种低温发动机,并成功地应用在 H—Ⅰ运载火箭的第二级上。本文着重介绍日本低温发动机研制的历史,展示这些发动机独特的设计以及研制中所遇到的技术问题。  相似文献   

20.
<正>2023年7月12日09时00分,由蓝箭航天空间科技股份有限公司(以下简称“蓝箭航天”)自主研制的“朱雀”二号遥二运载火箭在我国酒泉卫星发射中心发射升空,按程序完成了飞行任务,发射任务获得圆满成功。“朱雀”二号遥二火箭是全球首枚成功入轨的液氧甲烷火箭,也是国内民商航天首款基于自主研制的液体发动机实现成功入轨的运载火箭,填补了国内液氧甲烷火箭的技术空白,意味着我国首款大推力液氧甲烷发动机通过飞行验证,标志着我国全面掌握液氧甲烷运载火箭关键技术,具有里程碑式意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号