首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
非失速二维振荡叶栅非定常流动数值模拟研究   总被引:3,自引:0,他引:3  
进一步完善了非定常雷诺平均N-S方程求解程序,借助快速网格生成方法,对周期性俯仰运动下NACA0012叶栅的非失速绕流问题进行了数值模拟研究,并分析了振荡叶栅的迟滞效应以及俯仰运动各个参数对迟滞效应的影响.数值模拟结果与实验结果对比表明,本文发展的数值模拟方法是可靠的;结果还表明,随着振幅,折合频率的增加迟滞效应增强,平均攻角对迟滞效应无影响;保持无量纲参数--振幅和折合频率的乘积--恒定时,迟滞效应相同.  相似文献   

2.
 建立了适用于双三角翼大迎角非定常分离流场模拟的数值方法,研究双三角翼俯仰振荡时的动态流场特性,给出动态流场结构和气动力性能随迎角的变化规律,重点考察了减缩频率、转轴位置、平均迎角和振幅等参数对动态流场迟滞效应和气动力曲线迟滞环的影响。研究结果表明:俯仰振荡到相同大迎角时上仰和下俯的流场存在明显差异;减缩频率对气动力迟滞效应的影响相对大于转轴位置;平均迎角的变化导致双三角翼背风区流场结构呈现不同流态,而振幅的大小决定这些流态的数目,事实上俯仰运动时如果跨越的流态数目越多则流场结构的动态响应滞后现象就越显著。通过数值分析,有利于提高对双三角翼在俯仰振荡运动条件下的非定常特性和流场滞后效应等非线性现象的认识。  相似文献   

3.
翼型前缘变形对动态失速效应影响的数值计算   总被引:1,自引:1,他引:0  
卢天宇  吴小胜 《航空学报》2014,35(4):986-994
翼型或机翼的动态失速效应所引起的低头力矩和正气动阻尼限制了飞行器气动性能的提高,甚至可能诱导发生不稳定运动。应用于小尺寸机翼的前缘动态变形(DDLE)技术,通过实时改变前缘形状,能够改善翼型前缘区域的速度梯度,进而抑制动态失速效应。采用转捩剪切应力输运(SST)黏性模型结合分区混合动态网格技术,研究了这种前缘变形对机翼俯仰运动所引起的非定常流动的影响,得到通过小幅度前缘变形抑制和延迟动态失速的方法,从而提高翼型的气动性能。翼型NAC A0012的数值模拟结果与动态失速风洞试验结果比较表明:所使用的数值计算方法能够较为准确地模拟翼型在动态失速过程中升力系数与俯仰力矩系数的变化情况,可用于研究前缘变形对翼型俯仰运动所引起的非定常流动的影响。前缘动态变形翼型俯仰运动过程的非定常流场的数值模拟表明:在大迎角下不同幅度的前缘下垂运动能够抑制流动分离的发生,从而抑制动态失速,但在大迎角下小幅度高频率的前缘下垂变形能更高效地抑制动态失速;前缘变形幅度以及变形沿中弧线的分布对升力系数和俯仰力矩系数的影响并不明显。  相似文献   

4.
为研究环量控制翼型在非定常运动中的气动力迟滞效应,通过求解环量控制翼型的强迫俯仰振动数值模拟数据,研究了不同减缩频率、振幅和射流动量系数对环量控制翼型气动特性的影响规律,分析了不同动量系数对非定常流场变化的作用机理。研究结果表明:减缩频率和迎角振幅越大,气动力迟滞效应越明显;小迎角下动量系数越大,迟滞效应越微弱,而大迎角下动量系数越大,迟滞效应越明显,并表现出提前动态失速的特征;气动力迟滞效应主要受翼型上表面压力分布影响,与后缘涡和上表面分离涡关系密切。所得结论对于环量控制技术在无人飞行器控制和操纵方面的应用具有一定的实际意义。  相似文献   

5.
旋翼翼型非定常动态失速特性的CFD模拟及参数分析   总被引:5,自引:0,他引:5  
构建了一套基于运动嵌套网格技术和可压缩RANS方程的旋翼翼型非定常流动特性模拟的高效、高精度的CFD方法。首先,发展了基于Poisson方程求解的围绕翼型的粘性贴体正交网格生成方法,并提出了基于最小距离法(MDM)改进策略的运动嵌套网格生成方法,克服了弹簧法可能导致网格畸变的不足;其次,为准确模拟由湍流分离和气流再附引起的气动力的迟滞效应,基于RANS方程、双时间方法和高阶插值格式,建立了旋翼翼型非定常气动特性分析的高精度数值方法,并采用能够较好捕捉气流分离现象的S-A湍流模型;再次,针对旋翼后行桨叶动态失速时桨叶剖面来流速度较低、迎角较大的特点,为解决低来流速度时L-B半经验模型在旋翼翼型非定常动态失速计算中的局限性,并克服可压缩方程对低速流场计算收敛困难和精度低的问题,建立了基于Pletcher-Chen低速预处理方法、FAS多重网格法和隐式LU-SGS方法相结合的高效数值方法。应用发展的方法,分别针对NACA0012、SC1095旋翼翼型静态和轻度、深度动态失速进行计算,精确捕捉了气动力迟滞效应以及翼型前缘脱体涡的产生、对流和脱落过程,验证了本文方法的有效性;最后,着重针对NACA0012动态失速状态,开展了振荡参数对旋翼翼型非定常动态失速特性影响的分析,研究结果表明翼型迎角平均值、振幅及减缩频率的变化均能引起迟滞效应的改变并使得气动力峰值发生有规律的前、后移现象等。  相似文献   

6.
考虑转捩影响的翼型动态失速数值模拟   总被引:4,自引:0,他引:4  
用数值求解雷诺平均NS方程的方法来对考虑转捩影响的中低雷诺数下振荡翼型动态失速进行数值模拟,计算中采用了k-ω SST两方程湍流模式,并加入Chen-Thyson转捩模型来模拟流动中的转捩效应.采用该方法分别对雷诺数Re=1.35×105和Re=7.7×104情况下NACA0012翼型的动态失速进行了数值模拟.计算结果显示:计算出的翼型动态失速气动力系数迟滞曲线与实测结果符合较好;对于Re=7.7×104的工况,实测的升力系数迟滞曲线中出现了高频振荡,计算结果有效地捕捉到了这一流动现象,并通过分析瞬时流线的计算结果揭示出尾缘涡的涡脱落是引起该高频振荡的主要原因.此外,通过数值计算分析了中低雷诺数下减缩频率对升力系数迟滞曲线的影响,从结果中看到,随着减缩频率的增加,翼型的失速攻角值会增加,升力系数峰值会增加;当减缩频率减小时,升力系数曲线中的高频振荡频率会增加.通过进一步计算分析知,升力曲线中高频振荡的产生不仅取决于减缩频率,还取决于流动的雷诺数,只有在中低雷诺数、较小的减缩频率下翼型动态失速的升力迟滞曲线中才有可能出现高频振荡.  相似文献   

7.
侯宇飞  李志平 《航空学报》2020,41(1):123276-123276
动态失速导致叶片气动载荷急剧变化,造成振动载荷激增,桨叶寿命大幅衰减。针对动态失速问题,从座头鲸胸鳍在动态倾转下取得良好的流动特性获得启示,据此模化出仿生正弦前缘翼面(包含3种波峰和2种波长),旨在实现动态失速控制。借助三维非定常数值模拟方法,采用运动网格技术,基于SC1095旋翼翼型,研究了仿生前缘动态失速流动控制机理及运动参数和来流速度的影响。结果表明:正弦前缘大幅度降低俯仰力矩系数峰值和阻力系数峰值;前缘波峰越大、波长越小,阻力系数峰值与俯仰力矩系数峰值的抑制效果越明显,虽然升力系数峰值减小,但其减小量远小于前两者,例如其中一种仿生翼使俯仰力矩系数峰值减小了47.7%,阻力系数峰值减小了36.4%,升力系数峰值减小14.1%;在最大迎角附近,正弦前缘能够缓和失速特性,使载荷变化更为平缓;在高平均迎角、低俯仰频率、低马赫数下,仿生翼动态失速控制效果更强,相比较而言迎角振幅的影响较小。  相似文献   

8.
翼型动态失速DBD等离子体流动控制的数值模拟研究   总被引:1,自引:0,他引:1  
进行了翼型深度动态失速及基于DBD介质阻挡放电等离子体激励器的流动控制技术数值模拟研究。将激励器对流动空气的作用以彻体力源项形式加入N-S方程。通过数值求解此N-S方程,研究了DBD激励器对NACA0012翼型俯仰运动深度动态失速的控制作用;研究了DBD激励器工作方式对动态失速平均气动力、气动力迟滞曲线的影响,提出了控制效果较好的激励器工作方式。  相似文献   

9.
旋翼翼型低Ma数动态失速特性计算   总被引:3,自引:1,他引:2  
低Ma数下,翼型前缘涡强度的增加和移动使法向力系数产生很大的超调量,Beddoes通过增加一项与延迟后后缘分离点有关项来模拟该特性,并改进Leishman-Beddoes二维翼型动态失速模型。在此基础上,本文在非定常法向力系数中引入一阶延迟,推迟失速判断点,得到修正后模型;而后,通过计算NACA0012、OA207翼型在低Ma数下的非定常气动力,并与实验结果进行对比,验证了模型在计算翼型低Ma数下非定常气动力的准确性,并分析了折合频率、迎角平均值、振幅对计算结果的影响。  相似文献   

10.
用N-S方程计算翼型非定常粘性大攻角绕流   总被引:1,自引:0,他引:1  
本文给出了用NS方程对翼型非定常粘性大攻角绕流的数值模拟。控制方程为二级时均可压缩完全NS方程;湍流模型采用双层代数涡粘性模型 ̄[1]。使用近似因式分解ADI差分格式离散求解,网格是用保角变换方法生成的相对翼型固定的C型网格。本文给出两类典型非定常绕流数值模拟结果:翼型过失速常攻角周期流动和大攻角强迫俯仰谐振非定常绕流。并与国外的实验和计算结果进行了比较,表明了本方法准确、高效的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号