首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The Vega-1 and Vega-2 wave and plasma measurements performed on 6 and 9 March 1986 in the environment of comet Halley present similar characteristics. Field spectral intensity of up to 5 mVm?1Hz?12 at 300 Hz is measured at closest approach; enhanced signals are detected in the whistler mode and in the vicinity of the lower hybrid resonance frequency within respective average distances of 130,000 km and 60,000 km from the nucleus. The plasma density rises from 100 cm?3 at 200,000 km up to 3000 cm?3 at 25,000 km. The spacecraft potential is of the order of +3 V beyond a distance of 200,000 km and decreases to about +0.5 V at 8,000 km.  相似文献   

2.
Doppler and ranging measurements using the radio signal of the GIOTTO spacecraft were taken before, during, and after the encounter with Comet Halley on 1314 March 1986. The spacecraft velocity was found to decrease by a total of 23.3 cm s?1 due to impacting gas and (primarily) dust in the cometary atmosphere. A preliminary dust production rate Qd ? 10 × 103kg s?1 is found to be consistent with this deceleration. Power spectra of the carrier phase fluctuations reveal an increase in level and a flattening of the spectrum just prior to encounter, presumably associated with the enhanced dust impact rate. Finally, simulated Doppler time profiles are computed using the radial dependence of plasma density observed by the GIOTTO in situ investigations. It is shown that the cometary electron content profile would have been clearly seen if a dual-frequency downlink radio configuration had been available at encounter.  相似文献   

3.
Power-law spectra f(E)∝E?2.7 of < 40 keV suprathermal ions within ~107 km of propagating interplanetary shocks are explained by diffusive scattering near a plane shock. The theory fits the 25 November 1977 event with a mean free path perpendicular to the shock with is 0.01 AU in front of the shock and less than .0003 AU behind it, for 1 keV ions. The theory predicts a steepening spectrum at higher energies, of the form f(v)∝v?4exp(??λdv/ur) where u = (ΔV)2/2VW depends on the plasma velocity jump ΔV and the plasma speed VW and mean free path λ in front of the shock  相似文献   

4.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

5.
Very Large Array (V.L.A.) measurements at 20 cm wavelength map emission from coronal loops with second-of-arc angular resolution at time intervals as short as 3.3 seconds. The total intensity of the 20 cm emission describes the evolution and structure of the hot plasma that is detected by satellite X-ray observations of coronal loops. The circular polarization of the 20 cm emission describes the evolution, strength and structure of the coronal magnetic field. Preburst heating and magnetic changes that precede burst emission on time scales of between 1 and 30 minutes are discussed. Simultaneous 20 cm and soft X-ray observations indicate an electron temperature Te 2.5 × 107 K and electron density Ne 1010 cm?3 during preburst heating in a coronal loop that was also associated with twisting of the entire loop in space. We also discuss the successive triggering of bursts from adjacent coronal loops; highly polarized emission from the legs of loops with large intensity changes over a 32 MHz change in observing frequency; and apparent motions of hot plasma within coronal loops at velocities V > 2,000 kilometerspersecond.  相似文献   

6.
7.
Amino and hydroxy acids have been identified in the Murchison meteorite. Their presence is consistent with a synthetic pathway involving aldehydes, hydrogen cyanide and ammonia in an aqueous environment (Strecker-cyanohydrin synthesis). From the various equilibrium and rate constants involved in this synthesis, four independent estimates of the ammonium ion concentrations on the parent body at the time of compound synthesis are obtained; all values are about 2 × 10?3 M. Succinic acid and β-alanine have also been detected in the Murchison meteorite. Their presence is consistent with a synthesis from acrylonitrile, hydrogen cyanide and ammonia. Using the equilibrium and rate constants for this synthetic pathway, and the succinic acid/β-alanine ratio measured in the Murchison meteorite, an estimate of the hydrogen cyanide concentration of 10?3 to 10?2 M is obtained. Since hydrogen cyanide hydrolyzes relatively rapidly in an aqueous environment (t12 < 104yrs) this high concentration implies a period of synthesis of organic compounds as short as 104 years on the Murchison meteorite parent body.  相似文献   

8.
Experiments, which somewhat simulate the injection of monoenergetic (several keV) electron beams into the ionosphere, have been performed in the very large (17 m × 26 m) vacuum chamber at Johnson Space Center. Typical operating ranges were: Beam current, I (0–130 mA), beam energy, E (0.5–3 kV), magnetic field, (0.3–2 G), path length, L (10–20 m), and injection pitch angle, α(0–80°). Measurements were carried out in both steady state and pulsed modes. In steady state and for constant V, B, p, L, α, the beam plasma discharge (BPD) is abruptly ignited when the beam current is increased above a critical value; at currents below critical, the beam configuration appears grossly consistent with single particle behavior. If it is assumed that each of the experiment parameters can be varied independently, the critical current required for ignition obeys the empirical relationship at p < 2 × 10?5 torr:
IE3/2B0.7pL
The BPD is characterized by 1) a large increase in the plasma production rate manifested in corresponding increases in the 3914 Å light intensity and plasma density, 2) intense wave emissions in a broad band centered at the plasma frequency and a second band extending from a few kHz up to the electron cyclotron frequency, 3) scattering of the beam in velocity space and 4) radial expansion and pitch angle scattering of the primary beam leading to the disappearance of single particle trajectory features.Measurements of the BPD critical current have been carried out with an ion thruster (Kaufman engine) to provide a background plasma, and these indicate that the presence of an ambient plasma of typical ionospheric densities has little effect on the critical current relation.Measurements of wave amplitudes over a large frequency range show that the amplitude of waves near the plasma and electron cyclotron frequencies are too small to cause or sustain BPD, and that the important instabilities are at much lower frequency (~ 3 kHz in these measurements).  相似文献   

9.
10.
We note that far-from-equilibrium chemical systems can respond very sensitively to gravity. The response could be in selection of possible structures or in the formation of propagating bands. In these cases the sensitivity is characterized by the factor (Eg/kT)1n, where n=2 or 3, Eg the interaction energy, k the Boltzmann constant and T, the temperature. Also, taking the thermodynamic fluctuations into account, we obtain the theoretical limit for the minimum field strength measurable by such systems.  相似文献   

11.
12.
GIRL is a liquid helium cooled 50 cm telescope equipped with four focal plane instruments dedicated to astronomical and aeronomical observations. These instruments, a detector array, a photopolarimeter, an Ebert-Fastie-spectrometer and a Michelson-interferometer make up an “infrared observatory” having high sensitivity and high spectral and spatial resolution. Si:Ga-, Si:Sb-, Si:As-, Si:P-, Ge:Be-, Ge:Cu- and Ge:Ga-detectors with NEP-values as low as 3 10?17 W Hz?12 have been tested and will be used to cover the wavelength range 3…120 μm. A full size “thermal model” of the GIRL cryostat containing 300 1 of superfluid helium at 1.6 K has been tested at the industrial prime contractor MBB; results of these tests will be presented in a following paper by F. Dahl et al. Several new techniques for cold telescopes are used in GIRL, for instance a glass ceramics primary mirror, a low power chopping secondary and an active helium phase separator. The scientific objectives include studies of star formation regions and active galaxies as well as measurements of spurious gases in the earth atmosphere. GIRL will be pointed by the Instrument Pointing System (IPS) and is scheduled to fly on Spacelab in 1986/87.  相似文献   

13.
14.
Drift instabilities arising when accelerated protons are trapped by coronal magnetic fields of active regions are investigated theoretically. If β, the ratio of total (plasma + energetic particles) pressure and magnetic field pressure is larger than some value, β?0.1 to 0.3, the magnetic trap is destructed and protons are released into interplanetary space. If β < β1, the trapped protons excite gradient instability due to magnetic drift resonance. This “universal” instability results in rapid development of strong Alfvén wave turbulence with small wavelengths transverse to the magnetic field. Particle diffusion due to the waves has a rather complicated character and appears to be weak as compared to quasilinear diffusion. The role of Alfvén waves may consist in additional heating of the corona in the regions of closed magnetic field lines.  相似文献   

15.
16.
Classic solar atmospheric models put the Chromosphere-Corona Transition Region (CCTR) at 2 Mm above the τ5000=1 level, whereas radiative MHD (rMHD) models place the CCTR in a wider range of heights. However, observational verification is scarce. In this work we review and discuss recent results from various instruments and spectral domains. In SDO and TRACE images spicules appear in emission in the 1600, 1700 and 304 Å bands and in absorption in the EUV bands; the latter is due to photo-ionization of H i and He i, which increases with wavelength. At the shortest available AIA wavelength and taking into account that the photospheric limb is 0.34 Mm above the τ5000=1 level, we found that CCTR emission starts at 3.7 Mm; extrapolating to λ=0, where there is no chromospheric absorption, we deduced a height of 3.0±0.5 Mm, which is above the value of 2.14 Mm of the Avrett and Loeser model. Another indicator of the extent of the chromosphere is the height of the network structures. Height differences produce a limbward shift of features with respect to the position of their counterparts in magnetograms. Using this approach, we measured heights of 0.14±0.04 Mm (at 1700 Å), 0.31±0.09 Mm (at 1600 Å) and 3.31±0.18 Mm (at 304 Å) for the center of the solar disk. A previously reported possible solar cycle variation is not confirmed. A third indicator is the position of the limb in the UV, where IRIS observations of the Mg ii triplet lines show that they extend up to 2.1 Mm above the 2832 Å limb, while AIA/SDO images give a limb height of 1.4±0.2 Mm (1600 Å) and 5.7±0.2 Mm (304 Å). Finally, ALMA mm-λ full-disk images provide useful diagnostics, though not very accurate, due to their relatively low resolution; values of 2.4±0.7 Mm at 1.26 mm and 4.2±2.5 Mm at 3 mm were obtained. Putting everything together, we conclude that the average chromosphere extends higher than homogeneous models predict, but within the range of rMHD models..  相似文献   

17.
An ion chemistry model is used to investigate the negative chlorine ion chemistry of the mesosphere for quiet ionospheric conditions. Model results are presented for high latitudes in February as well as for the equator in Summer. For nighttime, Cl-Cl-, Cl-Cl-(HCl), and NO3(HCl) are the most abundant chlorine anions in the mesosphere. The concentration of ClO3 depends significantly on its stability against collision-induced dissociation. In contrast to previous model predictions, the abundance of Cl-(H2O)Cl-(H2O) is small. For daytime, photoelectron detachment and photodissociation have pronounced impact on the negative chlorine ion chemistry in the mesosphere. The abundance of all anion cluster is considerably smaller than at night. While Cl-Cl- decreases in the upper mesosphere, its abundance increases at lower altitudes.  相似文献   

18.
19.
The rotational state of Envisat is re-estimated using the specular glint times in optical observation data obtained from 2013 to 2015. The model is simplified to a uniaxial symmetric model with the first order variation of its angular momentum subject to a gravity-gradient torque causing precession around the normal of the orbital plane. The sense of Envisat’s rotation can be derived from observational data, and is found to be opposite to the sense of its orbital motion. The rotational period is estimated to be (120.674±0.068)·exp(4.5095±0.0096)×10-4·ts, where t is measured in days from the beginning of 2013. The standard deviation is 0.760?s, making this the best fit obtained for Envisat in the literature to date. The results demonstrate that the angle between the angular momentum vector and the negative normal of the orbital plane librates around a mean value of 8.53°±0.42° with an amplitude from about 0.7° (in 2013) to 0.5° (in 2015), with the libration period equal to the precession period of the angular momentum, from about 4.8?days (in 2013) to 3.4?days (in 2015). The ratio of the minimum to maximum principal moments of inertia is estimated to be 0.0818±0.0011, and the initial longitude of the angular momentum in the orbital coordinate system is 40.5°±9.3°. The direction of the rotation axis derived from our results at September 23, 2013, UTC 20:57 is similar to the results obtained from satellite laser ranging data but about 20° closer to the negative normal of the orbital plane.  相似文献   

20.
We study the propagation of energetic particles, accelerated by interplanetary shock waves, upstream of the shock. By using the appropriate propagator, we show that in the case of superdiffusive transport, the time profile of particles accelerated at a traveling planar shock is a power-law with slope 0<γ<10<γ<1, at variance with the exponential profile obtained for normal diffusion. By analyzing data sets of interplanetary shocks in the solar wind observed by the Ulysses and the Voyager 2 spacecraft, we find that the time profiles of energetic electrons correspond to power-laws, with slopes γ?0.30–0.98γ?0.300.98, implying a mean square displacement 〈Δx2〉∝tαΔx2tα, with α=2-γ>1α=2-γ>1, i.e., superdiffusion. In addition, the propagation of ions is also superdiffusive, with α=1.07–1.13α=1.071.13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号