共查询到20条相似文献,搜索用时 0 毫秒
1.
T.E. Cravens A.F. Nagy T.I. Gombosi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(9):33-36
Model calculations of the dayside ionosphere of Venus are presented. The coupled continuity and momentum equations were solved for O2+, O+, CO2+, C+, N+, He+, and H+ density distributions, which are compared with measurements from the Pioneer Venus ion mass spectrometer. The agreement between the model results and the measurements is good for some species, such as O+, and rather poor for others, such as N+, indicating that our understanding of the dayside ion composition of Venus is incomplete. The coupled heat conduction equations for ions and electrons were solved and the calculated temperatures compared with Pioneer Venus measurements. It is shown that fluctuations in the magnetic field have a significant effect on the energy balance of the ionosphere. 相似文献
2.
S.J. Bauer L.M. Brace H.A. Taylor T.K. Breus A.J. Kliore W.C. Knudsen A.F. Nagy C.T. Russell N.A. Savich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(11):233-267
Physical properties of the Venus ionosphere obtained by experiments on the US Pioneer Venus and the Soviet Venera missions are presented in the form of models suitable for inclusion in the Venus International Reference Atmosphere. The models comprise electron density (from 120 km), electron and ion temperatures, and relative ion abundance in the altitude range from 150 km to 1000 km for solar zenith angles from 0° to 180°. In addition, information on ion transport velocities, ionopause altitudes, and magnetic field characteristics of the Venus ionosphere, are presented in tabular or graphical form. Also discussed is the solar control of the physical properties of the Venus ionosphere. 相似文献
3.
J.G. Luhmann R.C. Elphic C.T. Russell L.H. Brace R.E. Hartle 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):17-21
Theoretical models of the ionosphere of Venus have been constructed in the past without due consideration of the fact that the ionosphere is sometimes magnetized. This paper examines some differences between the magnetized and unmagnetized dayside Venus ionosphere using the Pioneer Venus Orbiter Langmuir probe and magnetometer data. Particular attention is given to the evaluation of the altitude profiles of the thermal electron heating and comparison of the magnitude of the magnetic force(¯vׯB) ׯB with other forces in the ionosphere. Several examples illustrate how heating profiles are different in the magnetized ionosphere with effective heating below ~200 km altitude reduced by orders of magnitude compared to the field-free ionosphere. The force associated with the magnetic field is comparable to other forces in the magnetized ionosphere. The measured plasma density, electron temperature and magnetic field thus suggest that large-scale magnetic fields should be included in future ionosphere models. 相似文献
4.
5.
6.
C.T. Russell J.G. Luhmann R.C. Elphic 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):13-16
When the solar wind dynamic pressure is high, the Venus ionosphere usually contains a belt of steady magnetic field at the very lowest altitudes to which Pioneer Venus probes. The current layer that flows on the high altitude side of this low altitude belt is centered at an altitude which ranges from 170 to 190 km with a most probable altitude of 182 km. This altitude is independent of solar zenith angle and hence the current system is flowing horizontally rather than vertically as proposed by Cloutier and co-workers. The lower edge of the magnetic belt was probed only on the lowest altitude passes of Pioneer Venus. This boundary is even more stable in location. The belt has decayed to 90% of its maximum strength usually by 162 km and to 50% of its maximum strength by 155 km. We interpret these data to indicate that the observed magnetic structure of the Venus ionosphere is a product of temporal evolution rather than of spacecraft motion through a spatially varying static structure. 相似文献
7.
H.A. Taylor H.G. Mayr H.B. Niemann J. Larson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(9):157-163
In-situ measurements of positive ion composition of the ionosphere of Venus are combined in an empirical model which is a key element for the Venus International Reference Atmosphere (VIRA) model. The ion data are obtained from the Pioneer Venus Orbiter Ion Mass Spectrometer (OIMS) which obtained daily measurements beginning in December 1978 and extending to July 1980 when the uncontrolled rise of satellite periapsis height precluded further measurements in the main body of the ionosphere. For this period, measurements of 12 ion species are sorted into altitude and local time bins with altitude extending from 150 to 1000 km. The model results exhibit the appreciable nightside ionosphere found at Venus, the dominance of atomic oxygen ions in the dayside upper ionosphere and the increase in prominence of atomic oxygen and deuterium ions on the nightside. Short term variations, such as the abrupt changes observed in the ionopause, cannot be represented in the model. 相似文献
8.
Arvydas J. Kliore 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(9):41-49
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability. 相似文献
9.
R.C. Elphic J.G. Luhmann C.T. Russell L.H. Brace 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(9):53-58
Force-free magnetic structures with cylindrical geometry appear under a variety of conditions in nature. Filamentary helical magnetic structures are observed to be associated with prominences and flares in the solar atmosphere, and can arise in superconductors and laboratory plasmas. Another example of cylindrical quasi-force-free configurations appears to exist in the Venus ionosphere. Magnetic flux ropes with diameters of ~20 – 30 km have been observed by the Pioneer Venus Orbiter to be a nearly ubiquitous feature of the dayside Venus ionosphere. Models of flux ropes suggest that many of these structures tend to be quasi-force-free, i.e., ×~0, while others are correlated with pressure variations in the ambient thermal plasma, ×=-?(nkT). 相似文献
10.
P. Velinov N.A. Smirnova V.A. Vlascov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(1):123-130
An ion model of the lower ionosphere is proposed. It consists of four positive ions: O2+, NO+ and two cluster ions - a simpler CI1 and a more complex CI2. This model well explains the normal component of the winter anomaly (WA) in the D-region, which is recorded by absorption measurements on short radiowaves and rocket experiments at middle (40°N) and high (70°) latitudes. The higher values of the electron density during the winter appear as a result of the lower recombination because of smaller rates of cluster ion formation, i.e. the normal WA can be explained and modelled by the regular seasonal variations of composition, temperature and density. 相似文献
11.
K.S.W. Champion 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):169-178
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3∑u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed. 相似文献
12.
R.C. Elphic C.T. Russell L.H. Brace 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(4):313-316
The Venus ionosphere is influenced by variations in both solar EUV flux and solar wind conditions. On the dayside the location of the topside of the ionosphere, the ionopause, is controlled by solar wind dynamic pressure. Within the dayside ionosphere, however, electron density is affected mainly by solar EUV variations, and is relatively unaffected by solar wind variations and associated magnetic fields induced within the ionosphere. The existence of a substantial nightside ionosphere of Venus is thought to be due to the rapid nightward transport of dayside ionospheric plasma across the terminator. Typical solar wind conditions do not strongly affect this transport and consequently have little direct influence on nightside ionospheric conditions, except on occasions of extremely high solar wind dynamic pressure. However, both nightside electron density and temperature are affected by the presence of magnetic field, as in the case of ionospheric holes. 相似文献
13.
Jeffrey M. Forbes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(4):87-96
Recent progress in the theoretical and observational investigation of middle atmosphere tides is reviewed. Theoretical advances include development of more realistic thermal excitation and numerical simulation models, investigation of seasonal — latitudinal and longitudinal variations in tidal structures, and the origin and effects of ‘unsteadiness’ in tidal oscillations over periods of days. Recent analyses of middle latitude radar data between 80 Km and 130 Km delineate consistent seasonal phase patterns in this region. Analyses of rocket data show stratosphere and lower mesosphere tides to be characterized by smaller amplitudes, shorter vertical scales, greater unsteadiness, and greater spatial variability than exhibited in the upper mesosphere and above. Results from the first two ATMAP (Atmospheric Tides Middle Atmosphere Program) campaigns are also discussed. 相似文献
14.
Larry W. Esposito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(8):163-166
Spin-scan images from the Pioneer Venus Orbiter UV Spectrometer and the Cloud Photopolarimeter provide a set of planetary contrast measurements in the wavelength range 1990A to 3650A and phase angles from 33°–130°. The planet is darkest at the point where the UVS line of sight penetrates perpendicular to the cloud tops: thus the absorbing material responsible must be deep in the atmosphere. Sulfur dioxide absorption can explain the amount of contrast seen between 2000A and 3200A. At the longer wavelengths, the persistence of contrast requires another absorber which is deeper in the atmosphere and strongly associated with the location of the SO2. Part of the observed contrast is due to the high-lying haze discovered from Pioneer Venus polarimetry. The correlation between planetary contrast and polarization does not support large scale clearing or major vertical motions of the cloud tops as the sole cause of the observed contrast. However, a scheme in which absorbers subject to photochemical destruction are mixed upward into the cloud top region provides a consistent explanation for the origin of these markings. 相似文献
15.
D. Bilitza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(10):123-130
Theoretical considerations can be helpful tools in modelling ionospheric parameters in regions and for times where not enough experimental data are available. Our study asks whether results of heat balance calculations should be introduced to supplement the data base for the International Reference Ionosphere (IRI). We discuss the present status of our theoretical understanding and examine the influence of the following unresolved or neglected terms: (1) electron heating rate, (2) electron cooling by fine structure excitation of atomic oxygen, and (3) height-dependent Coulomb Logarithm. The ambiguity introduced by (1)–(3) leads up to 30% uncertainty in the electron temperature of the lower thermosphere. The electron temperature in the upper ionosphere is largely determined by heat conduction from above and depends critically on the conditions assumed at the boundary between ionosphere and plasmasphere. 相似文献
16.
Rosemary Morrow Pierre-Yves Le Traon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The paper provides a review of recent results on mesoscale ocean dynamics derived from satellite altimetry. Since 1992, we have had an unprecedented 18 year high-resolution monitoring of the ocean mesoscale field. Altimetry is often used in mesoscale studies in synergy with other remote sensing techniques and in situ data. This global, high-resolution data set has allowed oceanographers to quantify the previously unknown seasonal and interannual variations in eddy kinetic energy and eddy heat and salt transports, and investigate their causes. Eddy tracking techniques have allowed us to monitor their propagation pathways, to bring to light the meridional divergence of cyclones and anticyclones, and to question the role of Rossby waves versus non-linear eddies in the mid to high latitude bands. Altimetry has also revealed the presence of zonal fronts and jets everywhere in the ocean, and brought to light how mesoscale eddies can impact back onto the atmospheric circulation. Finally, altimetry, in synergy with other observations and high-resolution numerical models, has helped reveal the complexity of the sub-mesoscale features, associated with stirring and mixing around the mesoscale eddies, of great importance for the vertical exchange of oceanic tracers. Altimetry has revealed the complexity of the mesoscale system… the scientific community is now working to understand the interplay between these mesoscale eddies, the ocean interior and its impact on the overlying atmosphere. 相似文献
17.
18.
Recent advances in observations and modeling of the solar ultraviolet and X-ray spectral irradiance 总被引:1,自引:0,他引:1
Thomas N. Woods 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies. 相似文献
19.
G. Haerendel R.Z. Sagdeev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(2):29-46
The PORCUPINE sounding rocket project provided the opportunity to study the dynamics of an artificially injected plasma beam in the near-Earth space. The structure of the plasma beam, its propagation across the magnetic field as well as the resulting wave phenomena will be discussed. 相似文献
20.
S.S. Rao Shweta Sharma R. Pandey 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(8):2031-2039
Efficacy of SAMI2 model for the Indian low latitude region around 75°E longitudes has been tested for different levels of solar flux. With a slight modification of the plasma drift velocity the SAMI2 model has been successful in reproducing quiet time ionospheric low latitude features like Equatorial Ionization Anomaly. We have also showed the formation of electron hole in the topside equatorial ionosphere in the Indian sector. Simulation results show the formation of electron hole in the altitude range 800–2500?km over the magnetic equator. Indian zone results reveal marked differences with regard to the time of occurrence, seasonal appearances and strength of the electron hole vis-a-vis those reported for the American equatorial region. 相似文献