首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The D-region IRI profiles are compared with the direct rocket measurements as well as with ground-based radio observations by a variety of techniques. The characteristics of D-region IRI profiles and the dependence of electron density on solar zenith angle, sunspot number, latitude and season are discussed. The sensitivity of certain reflection coefficients on the height distribution of electron density below 70 km is illustrated with a typical example. For D-region modelling, the results show the importance of simultaneous measurement of reflection and conversion coefficients together with polarization phase over a wide frequency range.  相似文献   

3.
The effect of the rocket exhaust products on the D-region of the ionosphere is investigated with the help of Very low frequency (VLF) electromagnetic wave propagation characteristics within the Earth-ionosphere waveguide. The changes in the electron density profile are computed from the observed VLF signal amplitude perturbations about 3 dB during the rocket launch. We find a localized electron depletion in the lower ionosphere at an altitude of around 58 km, that is thought to be originated by the attachment of ionospheric ion and molecular hydrogen along with water molecule in the exhaust product of first stage burn of Geosynchronous Launch Vehicle (GSLV) rocket at the time of GSLV launched from Sriharikota, India, on 27 August 2015 at 11:22 UT (16:52 IST). The ionospheric depletion perturbed the navigational VLF signal (VTX = 17 kHz) 134 s after the launch of the GSLV rocket.  相似文献   

4.
5.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

6.
基于传播矩阵法计算了均匀半空间电离层的反透射系数, 同时解Booker复系数四次方程得到电离层的复折射指数, 分别研究了电离层反射透射系数及折射指数随VLF频段入射电波频率、入射角和地磁倾角、电离层电子浓度及碰撞频率的变化规律. 计算结果表明, 在VLF频段, 垂直电偶极子辐射的横磁(Traverse Magnetic)波更易透射进入电离层, 而水平电偶极子辐射的横电(Traverse Electric) 波易被限制在地-电离层波导内来回反射. 电离层电子密度较低时 (如夜间), 在高纬度地区, 观测到地震电离层VLF异常的概率更大. 当考虑地磁场 的影响时, 电离层将允许地震辐射的超低频(Ultra Low Frequency ,ULF)/甚低频 (Very Low Frequency, VLF)部分的电磁波透射进入电离层, 这一点已有很多卫星观测事实为证, 但其进一步的物理机制尚需深入研究.   相似文献   

7.
8.
Results of a satellite experiment are presented on detection of VLF and ELF-waves excited by irradiation of the night ionosphere F-region by the field of a nonmodulated high-power radio wave. The excited VLF and ELF-waves have been detected at the topside ionosphere heights h=500–1000 km in the frequency bands 8 kHz相似文献   

9.
Tashkent International Heliophysical Year (IHY) station is a member of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network being operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in Very Low Frequency (VLF) band. Regular monitoring of the D- and F-layers of ionosphere over Central Asia territory is being performed on the permanent basis starting year 2008. We have studied VLF amplitude anomalies related to the EQs occurred in 2008–2009 years with magnitude more than 5 on the path way from the VLF transmitters to the Tashkent station assuming that propagation of VLF ground-based transmitters signals can be perturbed by EQ preparation detectable from the ground-based measurements in the VLF bands. For analyzing narrowband data we have used the nighttime fluctuation (NF) method paying attention to the data obtained during the local nighttime (20:00 LT–04:00 LT) in Tashkent where the VLF receiver is operating. The mean nighttime amplitude (or trend) and nighttime fluctuation are found to increase significantly before the EQ occurred on the path way from the transmitters to the receiver. The obtained results have revealed an agreement with VLF amplitude anomalies observed in Tashkent VLF station during the strong EQs occurred on the path way from the transmitters to the receiver. Some results are presented to show the probing potentiality of VLF waves to predict short term EQs with high magnitude.  相似文献   

10.
Research on empirical or physical models of ionospheric parameters is one of the important topics in the field of space weather and communication support services. To improve the accuracy of predicting the monthly median ionospheric propagating factor at 3000 km of the F2 layer (identified as M(3000)F2) for high frequency radio wave propagation, a model based on modified orthogonal temporal–spatial functions is proposed. The proposed model has three new characteristics: (1) The solar activity parameters of sunspot number and the 10.7-cm solar radio flux are together introduced into temporal reconstruction. (2) Both the geomagnetic dip and its modified value are chosen as features of the geographical spatial variation for spatial reconstruction. (3) A series of harmonic functions are used to represent the M(3000)F2, which reflects seasonal and solar cycle variations. The proposed model is established by combining nonlinear regression for three characteristics with harmonic analysis by using vertical sounding data over East Asia. Statistical results reveal that M(3000)F2 calculated by the proposed model is consistent with the trend of the monthly median observations. The proposed model is better than the International Reference Ionosphere (IRI) model by comparison between predictions and observations of six station, which illustrates that the proposed model outperforms the IRI model over East Asia. The proposed method can be further expanded for potentially providing more accurate predictions for other ionospheric parameters on the global scale.  相似文献   

11.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

12.
Signals of VLF transmitters of the Omega navigation system located in the auroral zone (66.4°N, 13.2°E, L= 5) were recorded by the VLF receiving equipment of the Interkosmos 19 satellite. Signals at frequencies between 10.2 and 13.6 kHz were received in a region above the transmitters, frequently with whistler-type echoes. An analysis of these echoes has shown their predominating occurrence in periods of low geomagnetic activity (Kp<2+). The occurrence region of these phenomena in the outer ionosphere has the dimension of about 1000 km and its position is betweenL= 2.5 and L= 4.4. The delay of echo-signals is practically the same during one satellite pass but its values for different satellite revolutions lie between 2.5 and 3.5 s. The frequency spectrum of these signals can be broadened up to 100 Hz. On the basis of calculations made, it can be shown that the experimental results are generally in accordance with the hypothesis of nonlinear ducting of VLF waves in the magnetosphere.  相似文献   

13.
在国际参考电离层模型和多层准抛物模型的基础上,提出了一种混合应用两种模型进行电离层建模的新方法.利用射线追踪技术,分别对混合模型和传统国际参考电离层模型下短波射线在电离层中的轨迹进行了仿真,得到了电波群路径.通过与实测电波群路径的对比,结果表明:对中国中纬度地区在电离层混合模型下的射线追踪精度优于传统国际参考电离层模型下的射线追踪精度,同时混合建模方法降低了多层准抛物模型对输入条件的要求,扩展了多层准抛物模型在射线追踪技术中的应用范围.  相似文献   

14.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

15.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

16.
We examine the systematic differences between topside electron density measurements recorded by different techniques over the low-middle latitude operating European station in Nicosia, Cyprus (geographical coordinates: 35.14oN, 33.2oE), (magnetic coordinates 31.86oN, 111.83 oE). These techniques include space-based in-situ data by Langmuir probes on board.European Space Agency (ESA) Swarm satellites, radio occultation measurements on board low Earth orbit (LEO) satellites from the COSMIC/FORMOSAT-3 mission and ground-based extrapolated topside electron density profiles from manually scaled ionograms. The measurements are also compared with International Reference Ionosphere Model (IRI-2016) topside estimations and IRI-corrected NeQuick topside formulation (method proposed by Pezzopane and Pignalberi (2019)). The comparison of Swarm and COSMIC observations with digisonde and IRI estimations verifies that in the majority of cases digisonde underestimates while IRI overestimates Swarm observations but in general, IRI provides a better topside representation than the digisonde. For COSMIC and digisonde profiles matched at the F layer peak the digisonde systematically underestimates topside COSMIC electron density values and the relative difference between COSMIC and digisonde increases with altitude (above hmF2), while IRI overestimates the topside COSMIC electron density but after a certain altitude (~150 km above hmF2) this overestimation starts to decrease with altitude. The IRI-corrected NeQuick underestimates the majority of topside COSMIC electron density profiles and relative difference is lower up to approximately 100 km (above the hmF2) and then it increases. The overall performance of IRI-corrected NeQuick improves with respect to IRI and digisonde.  相似文献   

17.
Beat wave (BW) high frequency (HF) ionospheric heating experiments were conducted to generate very low frequency (VLF) waves. The VLF waves were registered with a VLF receiver located ~15?km east of the European Incoherent Scatter (EISCAT) heating facility in Tromsø, Norway. A fluxgate magnetometer was used to monitor auroral electrojet current, and ionospheric conditions were measured using a Dynasonde. Correlation coefficients between VLF amplitudes and the deviation of geomagnetic north–south components were calculated. Experimental results show that strong and positive correlation exists the majority of the time, but sometimes no correlation or even a negative correlation occurred. This is consistent with similar past experiments that took place with exclusively AM generation. These results therefore support the conclusion that BW generation of VLF waves is no different than with AM, likely occurring in the D or lower E ionospheric region.  相似文献   

18.
To examine the quality and propagation characteristics of the Very Low Frequency (VLF) radio waves in a very long propagation path, Indian Centre for Space Physics, Kolkata, participated in the 27th Indian scientific expedition to Antarctica during 2007–2008. One Stanford University made AWESOME VLF receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data were recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. The quality of the signal from the VTX transmitter was found to be very good, consistent and highly stable in day and night. The signal shows the evidences of the presence of the 24 h solar radiation in the Antarctic region during local summer. Here we report the both narrow band and broadband VLF observations from this site. The diurnal variations of VTX signal (18.2 kHz) are presented systematically for Antarctica path and also compared the same with the variations for a short propagation path (VTX-Kolkata). We compute the spatial distribution of the VTX signal along the VTX-Antarctica path using the most well-known LWPC model for an all-day and all-night propagation conditions. The calculated signal amplitudes corresponding to those conditions relatively corroborate the observations. We also present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible.  相似文献   

19.
20.
During 2008, the solar activity is extremely low. The satellite observations show that the ionospheric height and electron density is much lower than the predictions by the international reference ionosphere (IRI) model. In this paper, we compared the slant total electron content (TEC) observed by the COSMIC satellites during 2008 with the IRI model results. It is found that the IRI model with IRI2001 and IRI2001 Cor. topside options will always overestimate the electron density in both lower and higher altitudes. But the rest two topside options (NeQuick, and TTS) tend to overestimate the electron density in the F layer and underestimate it in the topside altitudes. The switch altitude between overestimation and underestimation and the latitude-local time distribution of the model deviation depend on the topside option. The current investigation might be useful for the model improvement as well as data assimilation work based on the IRI model and the LEO TEC data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号