首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Astronautica》2010,66(11-12):1689-1697
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
  • •new mission trajectories and concepts;
  • •operational command and control considerations;
  • •expected science, operational, resource utilization, and impact mitigation returns; and
  • •continued exploration momentum and future Mars exploration benefits.
  相似文献   

2.
《Acta Astronautica》2001,48(5-12):681-691
The considerable surge in satellite constellations has brought to the fore the imperative need for an efficient constellation design and management plan. To address this emerging need, GMV has studied and tested algorithms for the analysis of the key phases in constellation development. These algorithms provide complete analysis capabilities and outline optimal strategies to deal with the following issues of the constellation life cycle:
  • •Constellation orbital design
  • •Constellation performance evaluation
  • •Launch strategy and constellation set-up
  • •Constellation replacement and spare strategy
  • •Constellation long-term evolution and end-of-life policy.
This paper presents a comprehensive overview of the algorithms developed to plan and handle a generic constellation. The main effort has been devoted to define a general approach to the problem, so as to allow the characterization of a wide range of possible mission requirements and constraints. A representative Earth observation constellation for fire detection and monitoring (FUEGO) has been considered to assess the effectiveness and the commercial viability of the algorithms and the strategies implemented.  相似文献   

3.
《Acta Astronautica》1999,44(2-4):187-192
The Advanced Deep Space System Development Program is managed by the Jet Propulsion Laboratory for NASA and is also called X2000. X2000 is organized to create advanced flight and ground systems for the exploration of the outer planets and beyond; it has been created to develop the engineering elements of flight and ground systems. Payloads will be developed by another team. Each X2000 delivery gets its requirements from a set of planned missions, or “mission customers”.The X2000 First Delivery Project supports missions to the Sun (to 4 solar radii), Europa (looking for a liquid ocean), Mars (in support of several Mars missions including a sample return), a comet (including a sample return), and Pluto followed by a trip into the Kuiper belt. This set of missions leads to some outstanding requirements:
  • 1.1. Long-life (10–12 years)
  • 2.2. Total Ionizing Dose of 4 Mrad (for a Europa Orbiter)
  • 3.3. Average power consumption less than or equal to 150 Watts
  • 4.4. Autonomous operations that result in an extreme reduction in operations costs
This paper describes the X2000 first delivery and its technologies following a brief overview of the program.  相似文献   

4.
5.
《Space Policy》2014,30(3):174-177
The European Space Agency (ESA) is pursuing an independent strategic planning process for consolidating a destination driven (LEO, Moon, Mars) space exploration strategy. ESA's space exploration strategy is driven by the goals to maximise knowledge gain and to contribute to economic growth. International cooperation is a key pillar of ESA's strategy as it is considered both, an enabler for achieving common goals and a benefit, opening new perspective for addressing future challenges. The achievement of ESA's space exploration strategy is enabled through international partnerships. The interagency coordination process conducted within the framework of the International Space Exploration Coordination Group (ISECG) plays an important role in laying the foundations for future partnerships. It has achieved so far the development of a common vision for space exploration, a common plan for implementing the vision in the form of the Global Exploration Roadmap, as well as a common approach for articulating the value of global space exploration. ESA has been a strong promoter and supporter of the interagency coordination process conducted within ISECG and thanks to its unique expertise in international cooperation the Agency has contributed to its success.  相似文献   

6.
Europe is present in robotic exploration though the European Space Agency?s mandatory space science program and the optional Aurora program. In addition some member states are also involved in projects of non-European space faring countries through bilateral co-operations. Europe is also present in human exploration through the ISS utilization program. ESA and some of its member states participate in the activities of the International Space Exploration Coordination Group (ISECG), a club of 14 space agencies working for the elaboration of a global exploration roadmap. Finally, ESA and the European Union have initiated a political approach with the setting up of an international forum so as to elaborate a commonly agreed vision on space exploration at political level.  相似文献   

7.
《Space Policy》2014,30(3):170-173
The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.  相似文献   

8.
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme.  相似文献   

9.
With growing knowledge of the lunar surface environment from recent robotic missions, further assessment of human lunar infrastructures and operational aspects for surface exploration become possible. This is of particular interest for the integration of advanced mobility assets, where path planning, balanced energy provision and consumption as well as communication coverage grow in importance with the excursion distance. The existing modeling and simulation tools for the lunar surface environment have therefore been revisited and extended to incorporate aspects of mobile exploration. An extended analysis of the lunar topographic models from past and ongoing lunar orbital missions has resulted in the creation of a tool to calculate and visualize slope angles in selected lunar regions. This allows for the identification of traversable terrain with respect to the mobile system capabilities. In a next step, it is combined with the analysis of the solar illumination conditions throughout this terrain to inform system energy budgets in terms of electrical power availability and thermal control requirements. The combination of the traversability analysis together with a time distributed energy budget assessment then allows for a path planning and optimization for long range lunar surface mobility assets, including manned excursions as well as un-crewed relocation activities. The above mentioned tools are used for a conceptual analysis of the international lunar reference architecture, developed in the frame of the International Architecture Working Group (IAWG) of the International Space Exploration Coordination Group (ISECG). Its systems capabilities are evaluated together with the planned surface exploration range and paths in order to analyze feasibility of the architecture and to identify potential areas of optimization with respect to time-based and location-based integration of activities.  相似文献   

10.
《Acta Astronautica》2001,48(5-12):299-309
Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing military and civilian applications like survey cameras.Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology.The paper describes two applications in development in SODERN:
  • 1. an infrared camera for the Infrared Atmospheric Sounding Interferometer (IASI): this camera integrated in IASI is used to take pictures of the main instrument field of view and to correlate them with other instrument measurements;
  • 2. an infrared radiometer for PICASSO-CENA based on the same camera design.
In both cases, the use of microbolometer detectors leads to very competitive designs in terms of volume, mass, power consumption and cost.  相似文献   

11.
《Space Policy》2014,30(3):178-182
The space sector gathers together people from a variety of fields who work in the industry on different levels and with different expertise. What is often forgotten is the impact and role of the current young generation. Their engagement is of great importance as undeniably today's young ‘space generation’ will be defining the direction of future space exploration.Today's vision of future human and robotic space exploration has been set out in the Global Exploration Roadmap (GER). This focuses on sustainable, affordable and productive long-term goals. The strategy begins with the International Space Station (ISS) and then expands human presence into the solar system, including a human mission to Mars.This paper presents a general overview of the role of today's youth within the space exploration sector and the challenges to overcome. To complete this perspective, we present results from a survey made among students and young professionals about their levels of awareness of the GER. The respondents presented their opinion about current aspects of the GER and prioritised the GER's objectives. It is hoped that the paper will bring a new perspective into the GER and a contribution to the current GER strategy.  相似文献   

12.
In a recent paper (Maccone, 2011 [15]) and in a recent book (Maccone, 2012 [17]), this author proposed a new mathematical model capable of merging SETI and Darwinian Evolution into a single mathematical scheme. This model is based on exponentials and lognormal probability distributions, called “b-lognormals” if they start at any positive time b (“birth”) larger than zero. Indeed:
  • 1.Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose, as it happened on Earth.
  • 2.In 2008 (Maccone, 2008 [9]) this author firstly provided a statistical generalization of the Drake equation where the number N of communicating ET civilizations in the Galaxy was shown to follow the lognormal probability distribution. This fact is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution if the number of factors is increased at will, i.e. it approaches infinity.
  • 3.Also, in Maccone (2011 [15]), it was shown that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of b-lognormal distributions constrained between the time axis and the exponential growth curve. This was a brand-new result. And one more new and far-reaching idea was to define Darwinian Evolution as a particular realization of a stochastic process called Geometric Brownian Motion (GBM) having the above exponential as its own mean value curve.
  • 4.The b-lognormals may be also be interpreted as the lifespan of any living being, let it be a cell, or an animal, a plant, a human, or even the historic lifetime of any civilization. In Maccone, (2012 [17, Chapters 6, 7, 8 and 11]), as well as in the present paper, we give important exact equations yielding the b-lognormal when its birth time, senility-time (descending inflexion point) and death time (where the tangent at senility intercepts the time axis) are known. These also are brand-new results. In particular, the σ=1 b-lognormals are shown to be related to the golden ratio, so famous in the arts and in architecture, and these special b-lognormals we call “golden b-lognormals”.
  • 5.Applying this new mathematical apparatus to Human History leads to the discovery of the exponential trend of progress between Ancient Greece and the current USA Empire as the envelope of the b-lognormals of all Western Civilizations over a period of 2500 years.
  • 6.We then invoke Shannon's Information Theory. The entropy of the obtained b-lognormals turns out to be the index of “development level” reached by each historic civilization. As a consequence, we get a numerical estimate of the entropy difference (i.e. the difference in the evolution levels) between any two civilizations. In particular, this was the case when Spaniards first met with Aztecs in 1519, and we find the relevant entropy difference between Spaniards an Aztecs to be 3.84 bits/individual over a period of about 50 centuries of technological difference. In a similar calculation, the entropy difference between the first living organism on Earth (RNA?) and Humans turns out to equal 25.57 bits/individual over a period of 3.5 billion years of Darwinian Evolution.
  • 7.Finally, we extrapolate our exponentials into the future, which is of course arbitrary, but is the best Humans can do before they get in touch with any alien civilization. The results are appalling: the entropy difference between aliens 1 million years more advanced than Humans is of the order of 1000 bits/individual, while 10,000 bits/individual would be requested to any Civilization wishing to colonize the whole Galaxy (Fermi Paradox).
  • 8.In conclusion, we have derived a mathematical model capable of estimating how much more advanced than humans an alien civilization will be when SETI succeeds.
  相似文献   

13.
14.
The authors and 50 other students from around the world participated in the International Space University's (ISU) 1996 Summer Session Solar Probe Design Project. The main product of this was a 349-page text on the future of solar exploration and applications entitled Ra: The Sun for Science and Humanity. This article condenses and highlights the policy directions, organizational initiatives and strategic framework presented in that work. In particular, these include the proposed creation of a working group on international solar exploration and applications to act as a forum for mission planning, and a model for facilitating interagency/international exchanges regarding solar missions.  相似文献   

15.
《Space Policy》2014,30(3):143-145
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to ‘endure’ the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.  相似文献   

16.
《Acta Astronautica》2008,62(11-12):1019-1028
In this paper, the concept of Orbit Transfer Vehicle for Deep Space Exploration (Deep Space OTV) is proposed, and its effectiveness and feasibility are discussed. Basic concept is the separation of two functions required for the deep space exploration, the transportation to the destination, and the exploration at the destination. Deep Space OTV is a spacecraft specialized for the transportation to the deep space destination. It is an expendable spacecraft propelled by solar electric propulsion. The payload of Deep Space OTV is Explorer, which is a spacecraft specialized for the exploration at the deep space destination. The effectiveness of the concept is discussed qualitatively, focused on the merits of the separations of two functions. The feasibility of Deep Space OTV is discussed based on the conceptual design of the spacecraft and its applicability to deep space missions. Several deep space missions are modeled and the payload capacity of Deep Space OTV is estimated. The missions include Asteroid rendezvous, Mars orbiter, Lunar lander, and so on.  相似文献   

17.
Yasuhiro Kawakatsu   《Acta Astronautica》2007,61(11-12):1019-1028
In this paper, the concept of Orbit Transfer Vehicle for Deep Space Exploration (Deep Space OTV) is proposed, and its effectiveness and feasibility are discussed. Basic concept is the separation of two functions required for the deep space exploration, the transportation to the destination, and the exploration at the destination. Deep Space OTV is a spacecraft specialized for the transportation to the deep space destination. It is an expendable spacecraft propelled by solar electric propulsion. The payload of Deep Space OTV is Explorer, which is a spacecraft specialized for the exploration at the deep space destination. The effectiveness of the concept is discussed qualitatively, focused on the merits of the separations of two functions. The feasibility of Deep Space OTV is discussed based on the conceptual design of the spacecraft and its applicability to deep space missions. Several deep space missions are modeled and the payload capacity of Deep Space OTV is estimated. The missions include Asteroid rendezvous, Mars orbiter, Lunar lander, and so on.  相似文献   

18.
The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.  相似文献   

19.
《Space Policy》2014,30(3):156-162
The development of the Global Exploration Roadmap (GER) by 12 space agencies participating in the International Space Exploration Coordination Group broadly outlines a pathway to send humans beyond low Earth orbit for the first time since Apollo. Three themes have emerged: Exploration of a Near-Earth Asteroid, Extended Duration Crew Missions, and Humans to the Lunar Surface. The lack of detail within each of these themes could mean that realizing the goals of the GER would be significantly delayed. The purpose of this paper is to demonstrate that many of the details needed to fully define and evaluate these themes in terms of scientific rationale, economic viability, and technical feasibility already exist and need to be mapped to the GER. Here, we use the Humans to the Lunar Surface theme as an example to illustrate how this process could work. By mapping documents from a variety of international stakeholders, this process can be used to cement buy-in from the current partners and attract new ones to this effort.  相似文献   

20.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号