首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from x-ray to microwave frequencies. Values of n (1.65) and k (0.004 to 0.08) in the visible are consistent with deductions made by ground-based and spaceborne observations of Titan. Many infrared absorption features are present in k(λ), including the 4.6 μm nitrile band. Molecular analysis of the volatile component of this tholin was performed by sequential and non-sequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition, acid hydrolysis produces a racemic mixture of biological and non-biological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.  相似文献   

2.
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons.  相似文献   

3.
Comparative pyrolysis mass spectrometric data of Titan aerosol analogues, called "tholins", are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the interpretation of Titan atmosphere data from the Huygens probe in the future.  相似文献   

4.
The atmosphere of Titan partly consists of hazes and aerosol particles. Experimental simulation is one of the powerful approaches to study the processes which yield these particles, and their chemical composition. It provides laboratory analogues, sometimes called tholins. Development and optimization of experimental tools were undertaken in order to perform chemical and physical analyses of analogues under conditions free from contamination. A "Titan aerosol generator" was developed in the frame of the Cassini-Huygens mission, in order to produce Titan's aerosol analogues within conditions closer to those of the titanian atmosphere: cold plasma simulation system, low pressure and low temperature. The direct current (DC) glow discharge is produced by applying a DC voltage between two conductive electrodes inserted into the gas mixture-model of the studied atmosphere- at low pressure. A high-impedance power supply is used to provide the electrical field. All the system is installed in a glove box, which protect samples from any contamination. Finally the research program expected with this new material is presented.  相似文献   

5.
Some results, recently obtained from laboratory experiments of ion irradiation of ice mixtures containing H, C, N, and O, are here summarized. They are relevant to the formation and evolution of complex organics on interstellar dust, comets and other small bodies in the external Solar System. In particular the formation of CN-bearing species is discussed. Interstellar dust incorporated into primitive Solar System bodies and subsequently delivered to the early Earth, may have contributed to the origin of life. The delivery of CN-bearing species seems to have been necessary because molecules containing the cyanogen bond are difficult to be produced in an environment that is not strongly reducing as that of the early Earth probably was. Moreover we report on an ongoing research program concerning the interaction between refractory materials produced by ion irradiation of simple ices and biological materials (amino acids, proteins, cells).  相似文献   

6.
The Space Station provides an environment in which the forces required to suspend particles during an experiment can be reduced by as much as six orders of magnitude. This reduction in levitation force enables us to perform many new experiments in a variety of disciplines. We have grouped these experiments into two catatgories: 1) those involving an individual particle or the interaction between a few particles and 2) those involving clouds of particles. We consider only particle experiments at this stage because cloud experiments suffer from electrostatic interactions and levitation-forced coalescence therefore requiring considerably more space, mass and crew interaction. The displacement of a particle resulting from g-jitter for ballistic, Knudsen and Stokes flow regimes is considered in detail and the radiation, acoustic, electrostatic and electromagnetic levitation mechanisms to control this motion are reviewed. We have selected the simulation of organic haze production on Titan as an example experiment for detailed study. The objective of this experiment is to simulate the photolysis of methane and the subsequent formation of the organic haze particles in the upper atmosphere of Titan.  相似文献   

7.
Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined.  相似文献   

8.
Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF).  相似文献   

9.
PAHs (polycyclic aromatic hydrocarbons) are probably present as a mixture of neutral and ionized species and are responsible for the set of infrared emission bands in the 2-15 microns regions, which are observed in many different objects like reflection and planetary nebulae and external galaxies. PAHs are suggested to be the most abundant free organic molecules and ubiquitous in space. PAHs might also exist in the solid phase, included in interstellar ices in dense clouds. A complex aromatic network is expected on interstellar grains in the diffuse interstellar medium. The existence of an aromatic kerogen-like structure in carbonaceous meteorites and its similarity with interstellar spectra suggests a link between interstellar matter and primitive Solar System bodies.  相似文献   

10.
The atmosphere of Titan is known to contain aerosols, as evidenced by the Voyager observations of at least three haze layers. Such aerosols can have significant effects on the reflection spectrum of Titan and on the chemistry and thermal structure of its atmosphere. To investigate some of these effects, laboratory simulations of the chemistry of Titan's atmosphere have been done. The results of these studies show that photolysis of acetylene, ethylene, and hydrogen cyanide, known constituents of Titan's atmosphere, yields sub-micron sized spheres, with mean diameters ranging from 0.4 to 0.8 microns, depending on the pressures of the reactant gases. Most of the spheres are contained in near-linear aggregates. The formation of the aggregates is consistent with models of Titan's reflection spectrum and polarization, which are best fit with non-spherical particles. At room temperature, the particles are very sticky, but their properties at low temperatures on Titan are presently not known.  相似文献   

11.
What is the influence of hydrogen escape from the atmosphere of small planetary bodies on the synthesis of organic molecules in that atmosphere? To answer this question, laboratory experiments have been performed to study the evolution of different reducing model atmospheres submitted to electrical discharges, with and without the simulation of H2 escape. A study of mixtures of nitrogen and methane shows a very strong effect of H2 escape on the formation of organic nitriles, the only nitrogen containing organics detected in the gas phase. These are HCN, CH  CCN, (CN)2, CH2CHCN, CH3 CN and CH3CH2CN. The yield of synthesis of most of these compounds is noticeably increased, up to several orders of magnitude, when hydrogen escape is simulated. The escape of H2 from the atmosphere of the primitive Earth may have played a crucial role in the formation of reactive organic molecules such as CHCCN or (CN)2, which can be considered as important prebiotic precursors. These experimental results may also explain extant data concerning the nature and relative abundance of organics present in the atmosphere of Titan, a planetary satellite which may be an ideal model within our solar system for the study of organic cosmochemistry and exobiology.  相似文献   

12.
Organic chemistry on Titan and prebiotic chemistry on Earth involve the same N-containing organics: nitriles and their oligomers. Couplings of their chemistry in the three parts of Titan's geofluid (atmosphere, aerosols and surface) seem to play a key role in the organic chemical evolution of the planet. If liquid water was present on Titan, then a prebiotic chemistry, involving eutectics, similar to that of the early Earth, may have occurred. However, liquid water is currently absent and a prebiotic chemistry based only on N-organics may be evolving now on Titan. The other consequence of the low temperatures of Titan is the possible formation of organics unstable at room temperature and very reactive. So far, these compounds have not been systematically searched for in experimental studies of Titan's organic chemistry. C4N2 has already been detected on Titan. Powerful reactants in organic chemistry, CH2N2, and CH3N3, may be also present. They exhibit spectral signatures in the mid-IR strong enough to allow their detection at the 10-100 ppb level. They may be detectable on future IR spectra (ISO and Cassini) of Titan.  相似文献   

13.
The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the observed hydrocarbon species in Titan, the predicted abundance of ethene is to low by a factor of 10 to 40. While some ethene will be produced by charged-particle chemistry, its production by corona processes and subsequent diffusion into the stratosphere appears to be an adequate source. Because little UV penetrates to the lower atmosphere to destroy the molecules formed there, the corona-produced species may be long-lived and contribute significantly to the composition of the lower atmosphere and surface.  相似文献   

14.
A better understanding of the complex organic chemistry occurring in the methane rich atmosphere of Titan can be achieved via the comparison of observations with results obtained by theoretical models. Available observations are still few but their analysis requires the knowledge of a large set of data, namely frequencies and absolute band intensities. Cross sections are also needed to develop the chemical schemes of photochemical models, in particular the schemes leading to the formation of haze particles visible on Titan. Unfortunately, some of these parameters are not well known, especially if one takes into account the extreme physical conditions of the studied object. This lack of data is particularly enhanced for polyynes because these compounds are highly unstable at the usual pressure and temperature conditions of a laboratory and therefore are very difficult to study. We have developed UV and IR studies, coupling experimental and theoretical approaches, in order to extrapolate the parameters available for short polyynes to longer carbon chains. In the mid-UV range, when the length of the chain increases, the absorption system of polyynes is shifted to longer wavelength and its oscillator strength increases linearly. In the IR range, with the increase of the number of carbon bonds, the positions of the CCC and CCH bending modes shift to lower energy, the latest converging rapidly to a fixed value of 620.5 cm-1 for an infinite length polyyne. Implications for detection and evolution of polyynes in Titan's atmosphere are emphasised.  相似文献   

15.
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.  相似文献   

16.
Many experiments have already been carried out to simulate organic chemistry on Titan, the largest satellite of Saturn. They can provide fruitful information on the nature of minor organic constituents likely to be present in Titan's atmosphere, both in gas and aerosol phases. Indeed, all the organic compounds but one already detected in Titan's atmosphere have been identified in simulation experiments. The exception, C4N2, as well as other compounds expected in Titan from theoretical modeling, such as other N-organics, and polyynes, first of all C6H2, have never been detected in experimental simulation thus far. All these compounds are thermally unstable, and the temperature conditions used during the simulation experiments were not appropriate. We have recently started a new program of simulation experiments with temperature conditions close to that of Titan's environment. It also uses dedicated analytical techniques and procedures compatible with the analysis of organics only stable at low temperatures, as well solid products of low stability in the presence of O2 and H2O. Spark discharge of N2-CH4 gas mixtures was carried out at low temperature in the range 100-150 K. Products were analysed by FTIR, GC and GC-MS techniques. GC-peaks were identified by their mass spectrum, and, in most cases, by comparison of the retention time and mass spectrum with standard ones. We report here the first detection in Titan simulation experiments of C6H2 and HC5N. Their abundance is a few percent relative to C4H2 and HC3N, respectively. Preliminary data on the solid products indicate an elemental composition corresponding to (H11C11N)n. These results open new prospects in the modeling of Titan's haze making.  相似文献   

17.
We present in this paper a simulation of cometary spectra between 3 and 4 micrometers performed by using the optical properties of various carbon-based materials measured at different temperatures in the range 300-520 K. In our computations we have used new laboratory data obtained for hydrogenated amorphous carbon (HAC) grains and three kinds of polycyclic aromatic hydrocarbons (PAHs). All these materials show significant features in the near IR region; however, only the synthetic spectra obtained from HAC grains show a satisfactory agreement with the profile of the cometary bands.  相似文献   

18.
Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System.  相似文献   

19.
In the context of prebiotic chemistry in space, some of the outer planetary objects display H, C, N and O rich chemistry similar to the one in the biosphere of Earth. Of particular interest are Saturn's moon, Titan; Neptune's moon, Triton; and Pluto where extreme cold conditions prevail. Identifications of chemical species on these objects (surfaces and atmospheres) is essential to a better understanding of the radiation induced chemical reactions occurring thereon. There have been several ground based observations of these planetary objects in the infrared windows from 1 to 2.5 micrometers. Voyager also provided spectra in the thermal infrared (6 to 50 micrometers) region. Interpretation of these data require laboratory infrared spectra of relevant species under the temperature conditions appropriate to these objects. The results of some of these studies carried out in our laboratory and elsewhere and their impact on the analyses of the observed data will be summarized.  相似文献   

20.
Organic residues formed in the laboratory from the ultraviolet (UV) photo-irradiation or ion bombardment of astrophysical ice analogs have been extensively studied for the last 15 years with a broad suite of techniques, including infrared (IR) and UV spectroscopies, as well as mass spectrometry. Analyses of these materials show that they consist of complex mixtures of organic compounds stable at room temperature, mostly soluble, that have not been fully characterized. However, the hydrolysis products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In this study, we present the first X-ray absorption near-edge structure (XANES) spectroscopy measurements of three organic residues made from the UV irradiation of ices having different starting compositions. XANES spectra confirm the presence of different chemical functions in these residues, and indicate that they are rich in nitrogen- and oxygen-bearing species. These data can be compared with XANES measurements of extraterrestrial materials. Finally, this study also shows how soft X rays can alter the chemical composition of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号