首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
<正>嵌入式大气数据传感(Flush Airdata Sensing,FADS)系统是一种通过嵌入在飞行器前端或者机翼前缘的压力传感器阵列来测量飞行器表面测压孔的压力,并由测得的测压孔压力通过特定的解算算法来获得大气数据的传感系统。1 FADS系统的空气动力学模型通过将位势流模型与修正的牛顿流模型用形压系数ε相结合得到FADS的空气动力学模型。形压系数ε是马赫数Ma∞、当地迎角αe与当地侧滑角βe的函数。入射  相似文献   

2.
水陆两栖飞机的机身外形复杂,采用单一迎角传感器难以消除侧滑角的影响。对某大型水陆两栖飞机的前机身模型进行风洞试验,根据机身两侧迎角传感器受侧滑角影响的特点,在机身两侧对称位置安装迎角传感器,研究左右两侧迎角传感器的测量值随模型迎角、侧滑角的变化规律;根据左右两侧测量值的均值和差值,反算得到飞行迎角和侧滑角,并对此迎角、侧滑角解算方案进行试飞验证。结果表明:机身两侧安装迎角传感器可以消除侧滑角影响,从而得到准确的迎角信号,还可根据左右迎角差值计算得到侧滑角,采用机身左右两侧的迎角传感器解算飞行迎角和侧滑角是可行的。  相似文献   

3.
针对飞翼布局飞行平台对高精度迎角、侧滑角的依赖性,设计了一种采用安装于机头表面的测压孔和机翼前缘的测压孔相结合的FADS系统应用方案,给出了其空气动力学模型,并将该FADS系统与惯性系统相结合来提高机动情况下大气数据的测量精度。由于该系统以FADS测量结果为基础,所以可以保证最后输出结果的精度要求,而且还克服了FADS系统延时的影响,其计算复杂性基本没有增加,满足实时性要求,易于工程实现。  相似文献   

4.
应用BP神经网络开展高超声速飞行器嵌入式大气数据系统(FADS)算法研究。采用自主研发CACFD软件平台求解欧拉方程,计算获得飞行器头部的压力分布作为神经网络样本训练的输入,对应的来流状态,如静压、马赫数、迎角和侧滑角作为样本的目标训练神经网络,建立基于BP神经网络FADS求解算法,并进行测试研究。研究表明,基于神经网络技术的FADS算法具有较好的鲁棒性和求解精度,实时性强,是一种非常有效的求解算法。研究结果得出,一定样本数范围内,FADS的求解精度随着样本数增加而提高;算法的平均误差随着测压点的增加而减小;包含大锥角位置测压点的布点组合,明显比只有小锥角测压点布点组合的求解结果平均误差要小;去掉顶点测压点,对算法的求解结果影响不大;1%压力测量误差时,神经网络泛化性能表现非常稳定。  相似文献   

5.
基于神经网络的类乘波体飞行器FADS算法研究   总被引:1,自引:0,他引:1  
大气数据是飞行器飞行的重要参数,大气数据系统是必备的机载航电系统。嵌入式大气数据系统(FADS)是新一代大气数据系统,可用于类乘波体飞行器。飞行器外形特殊,大飞行包线内FADS压力场模型复杂,解算算法尚不完备。针对飞行器的特点,利用三维几何建模和计算流体动力学(CFD)计算的方法,分析FADS压力场模型特性,设计并验证了基于神经网络的类乘波体飞行器FADS算法,结果表明,算法对马赫数、攻角和侧滑角大气参数的解算可行有效。  相似文献   

6.
FADS/INS组合法迎角、侧滑角测量方法研究   总被引:3,自引:0,他引:3  
嵌入式大气数据传感(FADS)系统比传统迎角、侧滑角传感器在测量精度、可靠性、隐身性能上都具有较大的优势,因此该系统可被应用于各型飞行器上。但由于该系统在获得大气参数方面存在延时,所以,它在飞行器机动飞行状态下,迎角和侧滑角的测量精度会下降。针对这一问题,本文提出了以FADS测量结果为基础,采用惯性导航系统(INS)测量的迎角、侧滑角变化量进行修正的FADS/INS组合法迎角、侧滑角测量方法。理论分析和仿真结果表明,该组合系统在飞行器处于平稳和机动飞行时,对迎角、侧滑角的测量均能获得较高精度。  相似文献   

7.
测压点是嵌入式大气数据传感(FADS)系统的数据来源,其分布形式直接影响到系统测量精度。基于牛顿模型和滤波算法建立FADS计算模型;以球形机头为例,设定飞行剖面的马赫数范围为4.30~15.79,高度范围为25~70km;得出测压点圆周角、圆锥角和非对称分布下大气参数的计算误差。结果表明:沿圆周方向增加测压点数量,可提高FADS系统测量精度,但存在门槛值,超过此门槛值效果有限;在测压点数量相同的情况下,增大圆锥角可明显提高FADS的测量精度;测压点的非对称分布则对测量精度没有影响。  相似文献   

8.
对人工神经网络算法在尖楔前体飞行器用嵌入式大气数据传感系统(Flush Air Data Sensing System,FADS)中的应用进行了探讨。针对该FADS系统存在的建模困难及解算精度低的问题,采用BP神经网络算法代替传统的空气动力学模型,通过合理选择网络结构参数及训练验证,分别建立了FADS系统的含有单隐含层的三层网络模型及含有双隐含层的四层网络模型,对攻角、侧滑角、自由来流静压及马赫数等参数进行求解。数值仿真结果表明,建立的用于尖楔前体飞行器的FADS系统的神经网络算法求解精度较高,且含有双隐含层的网络模型精度优于单隐含层的模型精度。  相似文献   

9.
针对典型超声速飞行器的头部外形,采用CFD数值模拟方法计算获得超声速飞行器头部测压点阵列的压力数据,设计了基于BP神经网络技术的求解算法和基于FPGA+DSP构架数字信号处理的解算机、飞行马赫数2.0~4.5的嵌入式大气数据传感系统实时解算方案。应用蒙特卡罗法分析测量总误差对算法模型的影响,并获得满足嵌入式大气数据传感系统设计目标要求的测量系统总误差。算法在解算机上完成1次计算所需时间1ms,完全可以满足嵌入式大气数据传感系统算法实时解算设计的要求。在1.2m×1.2m超声速风洞完成求解算法的实时解算试验,试验结果与风洞系统的测量结果基本吻合,系统在实时解算过程中未出现异常、能灵敏反映出来流参数变化、具有很好的鲁棒性和敏捷性。静压测量相对误差≤6.9%,马赫数测量误差0.1,迎角和侧滑角的测量误差均1°。最后还分析了试验误差影响因素,提出了试验改进的方法。  相似文献   

10.
为克服传统的大气数据传感系统的不足,对嵌入式大气数据系统展开了研究。以某飞翼布局飞行器为研究对象,通过风洞试验和CFD数据,研究了针对嵌入式大气数据系统的模糊逻辑建模方法。以模型表面若干测压点的压力或压力系数作为模糊逻辑系统的输入,以迎角、侧滑角、来流速度和海拔高度作为输出,分别采用自适应和固定形状参数的隶属函数作为模型组成部分,混合使用梯度下降法和最小二乘法来识别模糊逻辑系统的参数,从而建立针对该嵌入式大气数据系统的模糊逻辑模型。建模结果表明,相比以往仅使用梯度下降法和固定形状参数的隶属函数的模糊逻辑模型,自适应隶属函数的引入使得模型精度与求解速度得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号