首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Total electron content (TEC) measured simultaneously using Global Positioning System (GPS) ionospheric monitors installed at some locations in Nigeria during the year 2011 (Rz = 55.7) was used to study the diurnal, seasonal, and annual TEC variations. The TEC exhibits daytime maximum, seasonal variation and semiannual variations. Measured TEC were compared with those predicted by the improved versions of the International Reference Ionosphere (IRI) and NeQuick models. The models followed the diurnal and seasonal variation patterns of the observed values of TEC. However, IRI model produced better estimates of TEC than NeQuick at all locations.  相似文献   

2.
Diurnal, seasonal and latitudinal variations of Vertical Total Electron Content (VTEC) over the equatorial region of the African continent and a comparison with IRI-2007 derived TEC (IRI-TEC), using all three options (namely; NeQuick, IRI01-corr and IRI-2001), are presented in this paper. The variability and comparison are presented for 2009, a year of low solar activity, using data from thirteen Global Positioning System (GPS) receivers. VTEC values were grouped into four seasons namely March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January). VTEC generally increases from 06h00 LT and reaches its maximum value at approximately 15h00–17h00 LT during all seasons and at all locations. The NeQuick and IRI01-corr options of the IRI model predict reasonably well the observed diurnal and seasonal variation patterns of VTEC values. However, the IRI-2001 option gave a relatively poor prediction when compared with the other options. The post-midnight and post-sunset deviations between modeled and observed VTEC could arise because NmF2 or the shape of the electron density profile, or both, are not well predicted by the model; hence some improvements are still required in order to obtain improved predictions of TEC over the equatorial region of the Africa sector.  相似文献   

3.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

4.
The International Reference Ionosphere (IRI) parameters B0 and B1 provide a representation of the thickness and shape, respectively, of the F2 layer of the bottomside ionosphere. These parameters can be derived from electron density profiles that are determined from vertical incidence ionograms. This paper aims to illustrate the variability of these parameters for a single mid latitude station and demonstrate the ability of the Neural Network (NN) modeling technique for developing a predictive model for these parameters. Grahamstown, South Africa (33.3°S, 26.5°E) was chosen as the mid latitude station used in this study and the B0 and B1 parameters for an 11 year period were determined from electron density profiles recorded at that station with a University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR) Digisonde. A preliminary single station NN model was then developed using the Grahamstown data from 1996 to 2005 as a training database, and input parameters known to affect the behaviour of the F2 layer, such as day number, hour, solar and magnetic indices. An analysis of the diurnal, seasonal and solar variations of these parameters was undertaken for the years 2000, 2005 and 2006 using hourly monthly median values. Comparisons between the values derived from measured data and those predicted using the two available IRI-2001 methods (IRI tables and Gulyaeva, T. Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv. Space Res. 7(6), 39–48, 1987.) and the newly developed NN model are also shown in this paper. The preliminary NN model showed that it is feasible to use the NN technique to develop a prediction tool for the IRI thickness and shape parameters and first results from this model reveal that for the mid latitude location used in this study the NN model provides a more accurate prediction than the current IRI model options.  相似文献   

5.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

6.
An empirical model of electron density (Ne) was constructed by using the data obtained with an impedance probe on board Japanese Hinotori satellite. The satellite was in circular orbit of the height of 600 km with the inclination of 31 degrees from February 1981 to June 1982. The constructed model gives Ne at any local time with the time resolution of 90 min and between −25 and 25 degrees in magnetic latitude with its resolution of 5 degrees in the range of F10.7 from 150 to 250 under the condition of Kp < 4. Spline interpolations are applied to the functions of day of year, geomagnetic latitude and solar local time, and linear interpolation is applied to the function of F10.7. Longitude dependence of Ne is not taken into account. Our density model can reproduce solar local time variation of electron density at 600 km altitude better than current International Reference Ionosphere (IRI2001) model which overestimates Ne in night time and underestimates Ne in day time. Our density model together with electron temperature model which has been constructed before will enable more understanding of upper ionospheric phenomenon in the equatorial region.  相似文献   

7.
Signals from Global Positioning System (GPS) satellites at the horizon or at low elevations are often excluded from a GPS solution because they experience considerable ionospheric delays and multipath effects. Their exclusion can degrade the overall satellite geometry for the calculations, resulting in greater errors; an effect known as the Dilution of Precision (DOP). In contrast, signals from high elevation satellites experience less ionospheric delays and multipath effects. The aim is to find a balance in the choice of elevation mask, to reduce the propagation delays and multipath whilst maintaining good satellite geometry, and to use tomography to correct for the ionosphere and thus improve single-frequency GPS timing accuracy. GPS data, collected from a global network of dual-frequency GPS receivers, have been used to produce four GPS timing solutions, each with a different ionospheric compensation technique. One solution uses a 4D tomographic algorithm, Multi-Instrument Data Analysis System (MIDAS), to compensate for the ionospheric delay. Maps of ionospheric electron density are produced and used to correct the single-frequency pseudorange observations. This method is compared to a dual-frequency solution and two other single-frequency solutions: one does not include any ionospheric compensation and the other uses the broadcast Klobuchar model. Data from the solar maximum year 2002 and October 2003 have been investigated to display results when the ionospheric delays are large and variable. The study focuses on Europe and results are produced for the chosen test site, VILL (Villafranca, Spain). The effects of excluding all of the GPS satellites below various elevation masks, ranging from 5° to 40°, on timing solutions for fixed (static) and mobile (moving) situations are presented. The greatest timing accuracies when using the fixed GPS receiver technique are obtained by using a 40° mask, rather than a 5° mask. The mobile GPS timing solutions are most accurate when satellites at lower elevations continue to be included: using a mask between 10° and 20°. MIDAS offers the most accurate and least variable single-frequency timing solution and accuracies to within 10 ns are achieved for fixed GPS receiver situations. Future improvements are anticipated by combining both GPS and Galileo data towards computing a timing solution.  相似文献   

8.
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions.  相似文献   

9.
The time series of hourly electron density profiles N(h) obtained from 27 ionosonde stations distributed world-wide have been used to obtain N(h) average profiles on a monthly basis and to extract the expected bottom-side parameters that define the IRI profile under quiet conditions. The time series embrace the time interval from 1998 to 2006, which practically contains the entire solar cycle 23. The Spherical Harmonic Analysis (SHA) has been used as an analytical technique for modeling globally the B0 and B1 parameters as general functions on a spherical surface. Due to the irregular longitudinal distribution of the stations over the globe, it has been assumed that the ionosphere remains approximately constant in form for a given day under quiet conditions for a particular coordinate system. Since the Earth rotates under a Sun-fixed system, the time differences have been considered to be equivalent to longitude differences. The time dependence has been represented by a two-degree Fourier expansion to model the annual and semiannual variations and the year-by-year analyses of the B0 and B1 have furnished nine sets of spherical harmonic coefficients for each parameter. The spatial–temporal yearly coefficients have been further expressed as linear functions of Rz12 to model the solar cycle dependence. The resultant analytical model provides a tool to predict B0 and B1 at any location distributed among the used range of latitudes (70°N–50°S) and at any time that improves the fit to the observed data with respect to IRI prediction.  相似文献   

10.
A new set of data obtained at low solar activity from Ilorin, Nigeria (geog. latitude 8.5°N, geog longitude, 4.6°E, dip 4.1°S) is used to validate the IRI 2001 model at low solar activity. The results show in general a good agreement between model and observed B0 at night but an over estimation during daytime. The overestimation is greatest during the morning period (0600LT–1000LT). The model prediction for B1 is fairly good at night and during the day. A dependence of B0 on solar zenith angle χ is observed during the daytime. A formulation of the form B0 = A[cos(χ)n] is therefore proposed. Values of the constants n and A were determined for the period of low solar activity for this station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号