首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = −0.39073 and ξH = −0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth’s oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.  相似文献   

2.
This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth’s J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.  相似文献   

3.
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period.  相似文献   

4.
The problem of a spacecraft orbiting the Neptune–Triton system is presented. The new ingredients in this restricted three body problem are the Neptune oblateness and the high inclined and retrograde motion of Triton. First we present some interesting simulations showing the role played by the oblateness on a Neptune’s satellite, disturbed by Triton. We also give an extensive numerical exploration in the case when the spacecraft orbits Triton, considering Sun, Neptune and its planetary oblateness as disturbers. In the plane a × I (a = semi-major axis, I = inclination), we give a plot of the stable regions where the massless body can survive for thousand of years. Retrograde and direct orbits were considered and as usual, the region of stability is much more significant for the case of direct orbit of the spacecraft (Triton’s orbit is retrograde). Next we explore the dynamics in a vicinity of the Lagrangian points. The Birkhoff normalization is constructed around L2, followed by its reduction to the center manifold. In this reduced dynamics, a convenient Poincaré section shows the interplay of the Lyapunov and halo periodic orbits, Lissajous and quasi-halo tori as well as the stable and unstable manifolds of the planar Lyapunov orbit. To show the effect of the oblateness, the planar Lyapunov family emanating from the Lagrangian points and three-dimensional halo orbits are obtained by the numerical continuation method.  相似文献   

5.
The geometries, electron affinities and/or electron detachment energies for the CnS and CnO (n = 2–8) molecules and their anions were calculated by using the RCCSD (T) method. The CnS (even n = 4, 6, and 8) and CnO (even n = 6 and 8) anions are found to be substantially more stable than their corresponding neutral species. Several anions are potentially detectable as interstellar molecules.  相似文献   

6.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

7.
Statistical and spectral analyses are performed to investigate variations of two ionosphere F2 layer key parameters, the critical frequency (foF2) and the peak height (hmF2), that were measured over Irkutsk (52.5°N, 104.0°E) from December 2006 to January 2008 under solar minimum. The analyses showed that both parameters contain quasi-harmonic oscillations with periods of Tn = 24/n hours (n = 1–7), among which the diurnal (n = 1) and semidiurnal (n = 2) ones are the strongest. Seasonal variations are explored of mean and median values, spectrum, amplitude, and phase of the diurnal and semidiurnal components of foF2 and hmF2.  相似文献   

8.
Inner-Formation Gravity Measurement Satellite System (IFGMSS) is used to map the gravity field of Earth. The IFGMSS consists of two satellites in which one is called “inner satellite” and the other one is named as “outer satellite”. To measure the pure Earth gravity, the inner satellite is located in the cavity of the outer satellite. Because of the shield effect of the cavity, the inner satellite is affected only by the gravitational force, so it can sense Earth gravity precisely. To avoid the collision between the inner satellite and the outer satellite, it is best to perform a real-time control on the outer satellite. In orbit, the mass of the outer satellite decreases with the consumption of its propellant. The orbit angular rate of the inner satellite varies with time due to various disturbing forces. These two parameters’ uncertainties make the C–W function be not so accurate to describe the formation behavior of these two satellites. Furthermore, the thrusters also have some uncertainties due to the unmodelled dynamics. To cancel the effects caused by the above uncertainties, we have studied the robust control method based on the μ-synthesis. This μ-synthesis eliminates the conservativeness and improves the control efficiency comparing with the H method. Finally, to test the control method, we simulate an IFGMSS mission in which the satellite runs in a sun synchronous circular orbit with an altitude of 300 km. The simulation results show the effectiveness of the robust control method. The performances of the closed-loop system with the μ-controller are tested by the μ-analysis. It has found that the nominal performance, the robust stability and the robust performance are all achieved. The transient simulation results further prove the control response is fast and the accuracy of the relative position meets the demand of the gravity measurement.  相似文献   

9.
Solar wind data is used to estimate the autocorrelation function for the stochastic process x(τ) = y(t + τ) − y(t), considered as a function of τ, where y(t) is any one of the quantities B2(t), np(t)V2(t), or np(t). This process has stationary increments and a variance that increases like a power law τ2γ where γ is the scaling exponent. For the kinetic energy density and the proton density the scaling exponent is close to the Kolmogorov value γ = 1/3, for the magnetic energy density it is slightly larger. In all three cases, it is shown that the autocorrelation function estimated from the data agrees with the theoretical autocorrelation function for a self-similar stochastic process with stationary increments and finite variance. This is far from proof, but it suggests that these stochastic processes may be self-similar for time scales in the small scale inertial range of the turbulence, that is, from approximately 10 to 103 s.  相似文献   

10.
A study of the evolution of the periodic and the quasi-periodic orbits near the Lagrangian point L2, which is located to the right of the smaller primary on the line joining the primaries and whose distance from the more massive primary is greater than the distance between the primaries, in the framework of restricted three-body problem for the Sun–Jupiter, Earth–Moon (relatively large mass ratio) and Saturn–Titan (relatively small mass ratio) systems is made. Two families of periodic orbits around the smaller primary are identified using the Poincaré surface of section method – family I (initially elliptical, gradually becomes egg-shaped with the increase in the Jacobi constant C and elongated towards the more massive primary) and family II (initially egg-shaped orbits elongated towards L2 and gradually becomes elliptical with the increase in C). The family I in the Sun–Jupiter and Saturn–Titan systems contains two separatrix caused by third-order and fourth-order resonances, while the Earth–Moon system has only one separatrix which is caused by third-order resonances. Also in the Sun–Jupiter and the Saturn–Titan systems, family I merge with family II, around Jacobian constant 3.0393 and 3.0163, respectively, while in the Earth–Moon system, family II evolves separately from two different branches. The two branches merge at C = 3.184515. In the Earth–Moon system, the family II contains a separatrix due to third-order resonances which is absent in the other two systems.  相似文献   

11.
Vertical profiles of ozone have been measured at balloon altitudes. Our purpose is to examine the character of vertical wavenumber spectra of ozone fluctuations, to assess the possible roles of gravity wave field in ozone fluctuations, and to determine dominant vertical wavelengths of ozone spectra. Vertical wavenumber spectra of 12 ozone fluctuations obtained during June–August 2003 are presented. Results indicate that mean spectral slopes in the wavenumber range from 4.69 × 10−4 to 2.50 × 10−3 cyc/m are about −2.91 in the troposphere and −2.87 in the lower stratosphere, which is close to the slope of −3 predicted by current gravity wave saturation models. The consistency of the observed spectral slopes with the value of −3 predicted by current gravity wave saturation models suggests that the observed ozone fluctuations are due primarily to atmospheric gravity waves. At m = 1/(1000 m) the mean spectral amplitude is over 30 times larger in the lower stratosphere than in the troposphere. Mean vertical wavenumber spectra in area-preserving form reveal dominant vertical wavelengths of ∼2.6 km in the troposphere and ∼2.7 km in the lower stratosphere, which is consistent with the values varying between 1.5 and 3.0 km estimated from the velocity field and temperature field at these heights.  相似文献   

12.
The NASA GSFC DORIS analysis center has provided weekly DORIS solutions from November 1992 to January 2009 (839 SINEX files) of station positions and Earth Orientation Parameters for inclusion in the DORIS contribution to ITRF2008. The NASA GSFC GEODYN orbit determination software was used to process the orbits and produce the normal equations. The weekly SINEX gscwd10 submissions included DORIS data from Envisat, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5. The orbits were mostly seven days in length (except for weeks with data gaps or maneuvers). The processing used the GRACE-derived EIGEN-GL04S1 gravity model, updated modeling for time-variable gravity, the GOT4.7 ocean tide model and tuned satellite-specific macromodels for SPOT-2, SPOT-3, SPOT-4, SPOT-5 and TOPEX/Poseidon. The University College London (UCL) radiation pressure model for Envisat improves nonconservative force modeling for this satellite, reducing the median residual empirical daily along-track accelerations from 3.75 × 10−9 m/s2 with the a priori macromodel to 0.99 × 10−9 m/s2 with the UCL model. For the SPOT and Envisat DORIS satellite orbits from 2003 to 2008, we obtain average RMS overlaps of 0.8–0.9 cm in the radial direction, 2.1–3.4 cm cross-track, and 1.7–2.3 cm along-track. The RMS orbit differences between Envisat DORIS-only and SLR & DORIS orbits are 1.1 cm radially, 6.4 cm along-track and 3.7 cm cross-track and are characterized by systematic along-track mean offsets due to the Envisat DORIS system time bias of ±5–10 μs. We obtain a good agreement between the geometrically-determined geocenter parameters and geocenter parameters determined dynamically from analysis of the degree one terms of the geopotential. The intrinsic RMS weekly position repeatability with respect to the IDS-3 combination ranges from 2.5 to 3.0 cm in 1993–1994 to 1.5 cm in 2007–2008.  相似文献   

13.
High Energy Charged Particle Experiment (HECPE) is to measure the fluxes of MeV electrons and tens of MeV protons. The two satellites of KuaFu-B are in the same polar orbit with apogee 7.0RE, perigee 1.8RE. They can sweep large L values and pass through the inner and outer radiation belts. The high energy electrons and protons in the radiation belts are principal sources for failures of satellites and spacecrafts in the Earth orbits. The enhancements of the high energy electrons and protons, so-called energetic particle events, are important phenomena of the Space Weather. The energy ranges monitored by HECPE are 0.3–0.5 MeV, 0.5–1.0 MeV, 1.0–2.0 MeV, and E > 2.0 MeV for electrons, 5–10 MeV, 10–20 MeV, 20–40 MeV, and 40–80 MeV for protons.  相似文献   

14.
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (−1.75 ± 0.6) × 10−11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth’s oblateness.  相似文献   

15.
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases.  相似文献   

16.
17.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   

18.
The Moon is immersed in plasma environment. The most interesting challenge of the lunar plasma– field environment is that it is alternatively dominated by the extended but variable outer atmosphere of the Earth – the magnetosphere – and by the extended but highly variable solar atmosphere – the solar wind. Understanding the plasma environment and its interaction with the lunar surface will be beneficial to both manned and robotic surface exploration activities and to scientific investigations. Presented is a preliminary map of variations of lunar surface electric potential over the day side and night side using probe equations and a discussion on dust dynamics in this E-field structure using the data from Electron Reflectometer in Lunar Prospector spacecraft during 1998–1999. On the day side, potential is around 5 V and on the night side it reaches up to −82 V. On the night side region, only highly energetic electrons can overcome this large negative potential. The variation at electron temperature (Te) strongly reflects in the surface potential. The potential reaches to a value of −82 V for Te = 58 eV. Surface charging causes the electrostatic transport of charged dust grains. Dust grain size of 0.1 μm shows a levitation height of 4.92 m on lunar day side, 748 m on terminator region and 3.7 km on the night side. The radius of maximum sized grain to be lofted, Rmax, peaks at the terminator region (Rmax = 0.83 μm). At the transition region dust levitation is almost absent. This region is most suited for exploration activities as the region is free from hazards caused by lunar dust.  相似文献   

19.
Multi-channel Global Positioning System (GPS) carrier phase signals, received by the six low Earth orbiting (LEO) satellites from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) program, were used to undertake active limb sounding of the Earth’s atmosphere and ionosphere via radio occultation. In the ionospheric radio occultation (IRO) data processing, the standard Shell inversion technique (SIT), transformed from the traditional Abel inversion technique (AIT), is widely used, and can retrieve good electron density profiles. In this paper, an alternative SIT method is proposed. The comparison between different inversion techniques will be discussed, taking advantage of the availability of COSMIC datasets. Moreover, the occultation results obtained from the SIT and alternative SIT at 500 km and 800 km, are compared with ionosonde measurements. The electron densities from the alternative SIT show excellent consistency to those from the SIT, with strong correlations over 0.996 and 0.999 at altitudes of 500 km and 800 km, respectively, and the peak electron densities (NmF2) from the alternative SIT are equivalent to the SIT, with 0.839 vs. 0.844, and 0.907 vs. 0.909 correlation coefficients when comparing to those by the ionosondes. These results show that: (1) the NmF2 and hmF2 retrieved from the SIT and alternative SIT are highly consistent, and in a good agreement with those measured by ionosondes, (2) no matter which inversion technique is used, the occultation results at the higher orbits (∼800 km) are better than those at the lower orbits (∼500 km).  相似文献   

20.
A large set of simulations, including all the relevant perturbations, was carried out to investigate the long-term dynamical evolution of fictitious high area-to-mass ratio (A/M) objects released, with a negligible velocity variation, in each of the six orbital planes used by Global Positioning System (GPS) satellites. As with similar objects discovered in near synchronous trajectories, long lifetime orbits, with mean motions of about 2 revolutions per day, were found possible for debris characterized by extremely high area-to-mass ratios. Often the lifetime exceeds 100 years up to A/M ∼ 45 m2/kg, decreasing rapidly to a few months above such a threshold. However, the details of the evolution, which are conditioned by the complex interplay of solar radiation pressure and geopotential plus luni-solar resonances, depend on the initial conditions. Different behaviors are thus possible. In any case, objects like those discovered in synchronous orbits, with A/M as high as 20–40 m2/kg, could also survive in this orbital regime, with semi-major axes close to the semi-synchronous values, with maximum eccentricities between 0.3 and 0.7, and with significant orbit pole precessions (faster and wider for increasing values of A/M), leading to inclinations between 30° and more than 90°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号