首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.  相似文献   

2.
In recent years, new techniques and algorithms such as Artificial Neural Networks (ANNs), Fuzzy Inference Systems (FIS) and Genetic Algorithm (GA) have been used as alternative statistical tools in modeling and forecasting issues. These methods have been extensively used in the field of geosciences and atmospheric physics. The main purpose of this paper is to combine FIS and ANNs for local modeling of the ionosphere Total Electron Content (TEC) in Iran. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed for TEC modeling. Also, Multi-Layer Perceptron ANN (MLP-ANN) and ANN based on Radial Base Functions (RBF) have been designed for analyzing ANFIS results. Observations of 29 Global Positioning System (GPS) stations from the Iranian Permanent GPS Network (IPGN) have been used in 3 different seasons in 2015 and 2016. These stations are located at geomagnetic low latitudes region. Out of these 29 stations, 24 stations for training and 5 stations for testing and validating were selected. The relative and absolute errors have been used to evaluate the accuracy of the proposed model. Also, the results of this paper are compared with the International Reference Ionosphere model (IRI2016). The maximum values of the average relative error for RBF, MLP-ANN, ANFIS and IRI2016 methods are 13.88%, 11.79%, 10.06%, and 18.34%, respectively. Also, the maximum values of the average absolute error for these methods are 2.38, 2.21, 1.5 and 3.36 TECU, respectively. Comparison of diurnal predicted TEC from the ANFIS, RBF, MLP-ANN and IRI2016 models with GPS-TEC revealed that the ANFIS provides more accurate predictions than the other methods in the test area.  相似文献   

3.
电离层延迟误差是全球导航卫星系统(global navigation satellite system,GNSS)中的重要误差源之一。目前在电离层延迟改正模型中,应用最广泛的是Klobuchar参数模型,但是该模型的改正率仅能达到60%左右,无法满足日益增长的精度需求。将国际GNSS监测评估系统(international GNSS monitoring & assessment system,iGMAS)发布的高精度电离层格网数据作为对照,对Klobuchar电离层模型误差进行计算和分析,结果发现在中纬度区域误差存在明显的周期性特征。为进一步提高Klobuchar电离层模型在中纬度区域的改正精度,建立了基于粒子群优化反向传播(back propagation,BP)神经网络的Klobuchar电离层误差预测模型,并以2019年10月的采样数据为例进行误差预测。结果表明,用该模型对中纬度区域电离层延迟提供误差补偿,可将精度提高到90%左右。  相似文献   

4.
太阳质子事件警报   总被引:7,自引:4,他引:3       下载免费PDF全文
采用人工神经网络预报方法,利用太阳耀斑的日面位置、X射线辐射的峰值流量及其上升时间、2695MHz和8800MHz微波辐射的半积分流量等5个物理参量,提出了一个新的太阳质子事件警报方案,预报太阳质子事件的发生及其流量和时间.该方案在本文检验中达到93.75%的预报准确率.  相似文献   

5.
The eastern part of the Rich area consists of the massive Paleozoic and Meso-Cenozoic cover formations that present the geodynamic development of the study area, where is characterized by various carbonate facies of Jurassic age. The geographical characteristic of the study area leaves the zone difficult to map by conventional methods. The objective of this work focuses on the mapping of the constituent lithological units of the study area using multispectral data of Landsat OLI, ASTER, and Sentinel 2A MSI. The processing of these data is based on a precise methodology that distinguishs and highlights the limits of the different lithological units that have an approximate similarity of spectral signature. Three techniques were used to enhance the image including Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), and Independent Component Analysis (ICA). Lithological mapping was performed using two types of supervised classification : Maximum likelihood classifier (MLC) and Support Vector Machine (SVM).The results of processing data show the effectiveness of Sentinel 2A data in mapping of lithological units than the ASTER and Landsat OLI data. The classification evaluation of two methods of the Sentinel 2A MSI image showed that the SVM method give a better classification with an overall accuracy of 93,93% and a Kappa coefficient of 0.93, while the MLC method present an overall accuracy of 82,86% and a Kappa coefficient of 0.80. The results of mapping obtained show a good correlation with the geological map of the study area as well as the efficiency of remote sensing in identification of different lithological units in the Central High Atlas.  相似文献   

6.
一种电离层TEC格点预测模型   总被引:1,自引:1,他引:0       下载免费PDF全文
基于分析时间序列数据的门限控制单元(GRU)神经网络模型,利用电离层TEC网格点历史数据、太阳活动指数、地磁活动指数作为预测因子,提出一种高精度电离层TEC格点预测模型.对全球60个网格点的数据进行了模型预测和对比实验,得到北半球平均相对精度的均值为83.96%,高于南半球的73.60%,表明预测模型在北半球的适应性更好,且中低纬地区的适应性优于高纬地区;预测模型在磁扰动期的平均相对精度的均值比磁平静期平均相对精度的均值高,约1.95%;与基于递归神经网络(RNN)、长短时记忆网络(LSTM)和双向长短时记忆网络(Bi-LSTM)的电离层TEC单站预测模型相比,本文预测模型的均方根误差(RMSE)平均为原来的80.8%.   相似文献   

7.
This research focuses on the application of HyMap airborne hyperspectral data and ASTER satellite multispectral data to mineral exploration and lithologic mapping in the Arctic regions of central East Greenland. The study area is the Kap Simpson complex in central East Greenland. The Kap Simpson complex is one of the largest exposed Palaeogene felsic complexes of East Greenland. It has been the target of several mineral exploration projects. The analysis of the HyMap data produced a detailed picture of the spatial distribution of the alteration minerals in the Kap Simpson complex, unavailable from field-based studies in the area. The analysis of the ASTER data produced mineral maps which due to the moderate spatial and spectral resolution of the ASTER imagery can be useful for reconnaissance level mineral exploration. Colour composites of the mean normalized ASTER thermal bands display lithological information and detected a large felsic igneous intrusion that has not been shown on the recently compiled geological maps of the area. The results of this research have considerable potential to evaluate the use of hyperspectral and multispectral remote sensing for geological purposes in the Arctic regions of central East Greenland.  相似文献   

8.
Darjeeling Himalaya is one of the several mountainous areas of India which is often suffered from landslide hazards. In this paper, a multi criteria evaluation is applied using 16 morphometric indicators, geology and lineaments to identify the areas vulnerable in respect to drainage and relief conditions. As both drainage and relief parameters exert strong influences on landslide intensity, both the diversity maps are integrated for final landslide susceptibility mapping. The obtained results show that 20.17?sq.?km (7.61%) area within the basin is highly susceptible for landslides, where average drainage density is 3.78?km/sq.?km, relative relief is greater than 408?m and slope is greater than 12°. The validation result shows that very high landslide susceptible zone is associated with very high frequency of landslide occurrence. Beside this, ROC curve also suggests good predicted rate (86.60%) for the model. So, the proposed method can be applied for predicting landslide susceptible zone.  相似文献   

9.
The main objective of this study was to produce flood susceptibility maps for Tajan watershed, Sari, Iran using three machine learning (ML) models including Self-Organization Map (SOM), Radial Basis Function Neural Network (RBFNN), and Multi-layers Perceptron (MLP). To reach such a goal, different physical-geographical factors (criteria) were integrated and mapped. 212 flood inventory map was randomly divided into training and testing datasets, where 148 flood locations (70%) were used for training and the remaining 64 locations (30%) were employed for testing. Model validation was performed using several statistical indices and the area under the curve (AUC). The results of the correlation matrix showed, three factors slope (0.277), distance from river (0.263), and altitude (0.223) were the most important factors affecting flood. The accuracy evaluation of the flood susceptibility maps through the AUC method and K-index shows that in the validation phase RBFNN (AUC = 0.90) outperform the MLP (AUC = 0.839) and SOM (AUC = 0.882) models. The highest percentage flood susceptibility of the area in MLP, SOM and RBFNN models is related to moderate (28.7%), very low (40%) and low (37%), respectively. Also, the validation results of the models using the Relative Flood Density (RFD) approach showed that very high class had the highest RFD value.  相似文献   

10.
Flooding is the overflow of water from stream, river, lake and sea that occurs all over the world and has disastrous effects on human society and environment. Frequent severe flood event in eastern India cause of death and damages every year so, the development of flood susceptibility method is needed for identifying the flood vulnerability areas to reduce the damages. Techniques of Remote Sensing (RS) and Geographical Information System (GIS) can help to flood susceptibility modeling by the accrued and analyzing huge amount of data in short time. The main objectives of this study are to determine the effectiveness of Evidence Belief Function (EBF), binomial Logistic Regression (LR) and ensemble of EBF and LR (EBF-LR) model with RS and GIS techniques for flood susceptibility mapping and spatial prediction of flood-susceptible areas in the Koiya river basin of West Bengal, India. Eight flood conditioning factors; Land use and land cover (LULC), soil, rainfall, normalized differences vegetation index (NDVI), distance to river, elevation, topographic wetness index (TWI) and stream power index (SPI) have been used, and total 264 historical flooding points were mapped, and randomly divided in to training (70%) and validating (30%) dataset. Flood susceptibility map has been generated by applying EBF, LR and ensemble EBF-LR method with the help of training and eight causative factors dataset. The maps have been divided in to six classes; extremely low, very low, low, moderate, high and very high. The receiver operating characteristic (ROC) curve has been used to accuracy assessment of the susceptibility map, and the area under curve (AUC) disclosures 87.9%, 85.2% and 84.1% prediction rate for the EBF-LR, EBF and LR model, respectively. This study is helpful to flood management program, dissection makers and planning in local administrative level.  相似文献   

11.
Continuous and timely real-time satellite orbit and clock products are mandatory for real-time precise point positioning (RT-PPP). Real-time high-precision satellite orbit and clock products should be predicted within a short time in case of communication delay or connection breakdown in practical applications. For prediction, historical data describing the characteristics of the real-time orbit and clock can be used as the basis for performing the prediction. When historical data are scarce, it is difficult for many existing models to perform precise predictions. In this paper, a linear regression model is used to predict clock products. Seven-day GeoForschungsZentrum (GFZ) final clock products sampled at 30 s are used to analyze the characteristics of GNSS clocks. It is shown that the linear regression model can be used as the prediction model for the satellite clock products. In addition, the accuracy of the clock prediction for different satellites are analyzed using historical data with different periods (such as 2 and 10 epochs). Experimental results show that the accuracy of the clock with the linear regression prediction model using historical data with 10 epochs is 1.0 ns within 900 s. This is higher accuracy than that achieved using historical data of 2 epochs. Finally, the performance analysis for real-time kinematic precise point positioning (PPP) is provided using GFZ final clock prediction results and state space representation (SSR) clock prediction results when communication delay or connection breakdown occur. Experimental results show that the positioning accuracy without prediction is better than that with prediction in general, whether using the final clock product or the SSR clock product. For the final clock product, the positioning accuracy in the north (N), east (E), and up (U) directions is better than 10.0 cm with all visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 15.0 cm to 7.0 cm. For the SSR clock product, the positioning accuracy of N, E, and U directions is better than 12.0 cm with visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 12.0 cm to 9.0 cm.  相似文献   

12.
大气模型修正是提高模型精度的一种重要方法.利用CHAMP卫星高精度加速仪反演的密度数据,采用球谐函数的形式对NRLMSISE-00模型进行修正.为了消除轨道高度变化对密度修正结果的影响,将密度数据同化到同一高度处,计算修正之后的密度误差,进而对未来三天的密度进行预报.结果表明,经球谐修正后,修正误差和预报误差均有显著降低.在太阳活动高年,修正误差可降至10%左右,提前1~3天预报精度分别提高31.34%,21.39%和13.75%;太阳低年时修正误差可降至14%左右,提前1~3天预报精度分别提高55.03%,47.79%和43.60%.   相似文献   

13.
为了预测民航运行的安全水平,针对评价结果数据序列样本少、不确定性大的特点,选择灰色区间预测方法,建立了民航安全评价的区间预测模型.给出了民航安全指数计算结果,分析了民航运行的安全水平现状,展示了这一安全评价体系的功能和使用方式.通过实例验证了民航安全评价的灰色区间预测模型的正确性,给出了下一年度民航综合安全指数的预测区间.结果表明:灰色区间预测方法是可行的.   相似文献   

14.
变工况条件下基于相似性的剩余使用寿命预测方法   总被引:1,自引:0,他引:1  
剩余使用寿命(RUL)预测是预测与健康管理(PHM)中的核心环节。提出一种变工况条件下基于相似性的RUL预测方法。结合相似性预测方法无需进行复杂的退化过程建模而能提供合理预测的优势,引入工况即设备工作时所处的环境或操作载荷等因素的影响来提升设备RUL预测准确性。对参考样本建立多工况的设备退化模型提升模型精度,在服役样本相似性度量预测中进行工况的匹配以实现在变工况下的RUL预测。方法能够更准确地描述实际工程中设备的退化过程和个体差异。依据相同准确度标准完成多组基本相似性方法和本文方法的对比实验结果表明,本文方法能够有效提高RUL预测准确度。   相似文献   

15.
为了拓宽微型探头-传感系统的可用频带,满足高频压力信号的测量需求,需对系统的频率响应特性进行研究,并分析现有数学模型对不同结构微型探头-传感系统的适用性及预测精度。对5种典型结构的微型探头-传感系统进行了判定和划分,综述了现有微型探头-传感系统的频响预测模型、假设条件及模型修正方法。为对理论数学模型进行定量评价,计算得到了不同结构微型探头-传感系统的谐振频率、截止频率和工作频带(幅值误差±5%),并与数值仿真和实验结果进行了对比。结果表明:对于引压管较短的谐振腔,利用Panton模型计算其谐振频率,误差可控制在1%以内;对于引压管较长及带有测压孔的结构,B-T模型的预测精度最高。对实验用微型探头-传感系统进行了优化设计,并用于超声速凝结自激振荡现象的研究。结果表明:优化的微型探头-传感系统频响特性可满足高频(约10 kHz)压力波动信号的动态测量需求。   相似文献   

16.
Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red–Green–Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.  相似文献   

17.
道面温度短时精准预测是跑道积冰预警的关键因素之一, 为了解决单一机理预测模型随预测时间延长而造成误差累积的问题, 提出了一种冰雪天气下跑道温度混合预测方法。将跑道温度机理预测模型与核极限学习机(KELM)相结合, 建立一种数据驱动修正残差的跑道温度机理预测模型。针对果蝇优化算法(FOA)收敛速度慢、易陷入局部最小值的问题, 引入权值更新函数和距离扩充因子, 调整果蝇的全局寻优效果, 避免陷入局部极小值。利用改进的果蝇优化算法(MFOA)对KELM的正则化参数与核参数联合优化, 以冰雪天气下跑道温度实际数据为例, 建立基于改进果蝇优化核极限学习机(MFOA-KELM)的跑道温度混合预测模型, 并在不同时间尺度下对该混合预测模型进行仿真测试。实验结果表明:与单一机理预测模型相比, 当预测时长为120 min时, MFOA-KELM混合预测模型的平均绝对误差至少减小了61.43%, 在残差阈值为±0.5℃时, 平均预测准确率为91.25%。可见, MFOA-KELM混合预测模型具有更高的预测准确性, 研究结论显示该混合预测方法能够为机场跑道温度短时精准预测提供新思路。   相似文献   

18.
By using a Doppler Weather Radar (DWR) at Shriharikota (13.66°N & 80.23°E), an Artificial Neural Network (ANN) based technique is proposed to improve the accuracy of rain intensity estimation. Three spectral moments of a Doppler spectra are utilized as an input data to an ANN. Rain intensity, as measured by the tipping bucket rain gauges around the DWR station, are considered as a target values for the given inputs. Rain intensity as estimated by the developed ANN model is validated by the rain gauges measurements. With the help of a developed technique, reasonable improvement in the estimation of rain intensity is observed. By using the developed technique, root mean square error and bias are reduced in the range of 34–18% and 17–3% respectively, compared to ZR approach.  相似文献   

19.
Land surface temperature (LST) is an important factor in global change studies, heat balance and as control for climate change. A comparative study of LST over parts of the Singhbhum Shear Zone in India was undertaken using various emissivity and temperature retrieval algorithms applied on visible and near infrared (VNIR), and thermal infrared (TIR) bands of high resolution Landsat-7 ETM+ imagery. LST results obtained from satellite data of October 26, 2001 and November 2, 2001 through various algorithms were validated with ground measurements collected during satellite overpass. In addition, LST products of MODIS and ASTER were compared with Landsat-7 ETM+ and ground truth data to explore the possibility of using multi-sensor approach in LST monitoring. An image-based dark object subtraction (DOS3) algorithm, which is yet to be tested for LST retrieval, was applied on VNIR bands to obtain atmospheric corrected surface reflectance images. Normalized difference vegetation index (NDVI) was estimated from VNIR reflectance image. Various surface emissivity retrieval algorithms based on NDVI and vegetation proportion were applied to ascertain emissivities of the various land cover categories in the study area in the spectral range of 10.4–12.5 μm. A minimum emissivity value of about 0.95 was observed over the reflective rock body with a maximum of about 0.99 over dense forest. A strong correlation was established between Landsat ETM+ reflectance band 3 and emissivity. Single channel based algorithms were adopted for surface radiance and brightness temperature. Finally, emissivity correction was applied on ‘brightness temperature’ to obtain LST. Estimated LST values obtained from various algorithms were compared with field ground measurements for different land cover categories. LST values obtained after using Valor’s emissivity and single channel equations were best correlated with ground truth temperature. Minimum LST is observed over dense forest as about 26 °C and maximum LST is observed over rock body of about 38 °C. The estimated LST showed that rock bodies, bare soils and built-up areas exhibit higher surface temperatures, while water bodies, agricultural croplands and dense vegetations have lower surface temperatures during the daytime. The accuracy of the estimated LST was within ±2 °C. LST comparison of ASTER and MODIS with Landsat has a maximum difference of 2 °C. Strong correlation was found between LST and spectral radiance of band 6 of Landsat-7 ETM+. Result corroborates the fact that surface temperatures over land use/land cover types are greatly influenced by the amount of vegetation present.  相似文献   

20.
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号