首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report successful levitation of large water droplets and mice using a newly built variable gravity simulator. The simulator consists mainly of a superconducting magnet with a room temperature accessible experimental levitating space. The superconducting magnet generates a field and field gradient product that is large enough to levitate water and many other common liquids. The warm bore of the magnet has a diameter of 66 mm, large enough to levitate small mammals. We demonstrate that water drops up to 50 mm in diameter and young mice can be levitated in the system. The capability of levitating large water drops and biological systems offers new opportunities for conducting detailed and in-depth study of properties of fluids and biological systems in reduced gravity environments.  相似文献   

2.
Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805–0.0831 L kg−1 h−1 and the level of CO2 emission was 0.0705–0.0736 L kg−1 h−1; O2 consumption by the two trial volunteers was 19.71 L h−1 and the volume of respiration-released CO2 was 18.90 L h−1. Under 7000–8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.  相似文献   

3.
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.  相似文献   

4.
Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion (Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO2 concentrations of 400, 1200 and 4000 μmol mol−1 and 3 light intensity levels of 150, 300, 450 μmol m−2 s−1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO2, but remained unchanged with increases in light intensity. Elevated CO2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO2 for antioxidant production.  相似文献   

5.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   

6.
HORACE (HOrloge à Refroidissement d’Atomes en Cellule = clock based on atoms cooled from vapour cell) is a compact cold caesium atom clock developed in SYRTE at Paris Observatory. This clock can operate both on ground and in microgravity environment. Design of HORACE is based on isotropic light cooling, allowing performing the whole clock sequence (cooling, atomic preparation, Ramsey interrogation and detection) at the same place. Compared to more conventional cold atom clocks such as atomic fountains, the use of isotropic light cooling simplifies both the optical part of the setup and the detection sequence, and leads to a drastic size reduction of the physics package. Very good short-term performances have been demonstrated at SYRTE since relative frequency instability of 2.2 × 10−13 τ−1/2 has been obtained. Optimization of the long term stability is still under progress and current results show relative frequency instability around 3 × 10−15 in 104 s of integration. With these performances, HORACE appears as a good candidate both for Galileo’s ground segment clock and for onboard Galileo clock.  相似文献   

7.
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.  相似文献   

8.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   

9.
The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m−2 s−1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m−2 s−1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m−2 s−1 to 1150 μmol m−2 s−1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.  相似文献   

10.
Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol−1) and another which used various light intensities (100, 300, 500 and 700 μmol m−2 s−1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.  相似文献   

11.
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop’s mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m−2 s−1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m−2 s−1 and 1150 μmol m−2 s−1. The exposure to the damaging air temperature for 44 h at 690 μmol m−2 s−1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m−2 s−1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m−2 s−1 PAR, respiration rate was higher than photosynthesis rate, but after 3–4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20–30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m−2 s−1 or 1150 μmol m−2 s−1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.  相似文献   

12.
In this paper a method of geoengineering is proposed involving clouds of dust placed in the vicinity of the L1 point as an alternative to the use of thin film reflectors. The aim of this scheme is to reduce the manufacturing requirement for space-based geoengineering. It has been concluded that the mass requirement for a cloud placed at the classical L1 point, to create an average solar insolation reduction of 1.7%, is 7.60 × 1010 kg yr−1 whilst a cloud placed at a displaced equilibrium point created by the inclusion of the effect of solar radiation pressure is 1.87 × 1010 kg yr−1. These mass ejection rates are considerably less than the mass required in other unprocessed dust cloud methods proposed and are comparable to thin film reflector geoengineering requirements. Importantly, unprocessed dust sourced in-situ is seen as an attractive scheme compared to highly engineered thin film reflectors. It is envisaged that the required mass of dust can be extracted from captured near Earth asteroids, whilst stabilised in the required position using the impulse provided by solar collectors or mass drivers used to eject material from the asteroid surface.  相似文献   

13.
The Moon and the moons of Mars should be extremely quiet seismically and could therefore become sensitive gravitational wave detectors, if instrumented properly. Highly sensitive displacement sensors could be deployed on these planetary bodies to monitor the motion induced by gravitational waves. A superconducting displacement sensor with a 10-kg test mass cooled to 2 K will have an intrinsic instrument noise of 10−16 m Hz−1/2. These sensors could be tuned to the lowest two quadrupole modes of the body or operated as a wideband detector below its fundamental mode. An interesting frequency range is 0.1–1 Hz, which will be missed by both the ground detectors on the Earth and LISA and would be the best window for searching for stochastic background gravitational waves. Phobos and Deimos have their lowest quadrupole modes at 0.2–0.3 Hz and could offer a sensitivity hmin ? 10−22 Hz−1/2 within their resonance peaks, which is within two orders of magnitude from the goal of the Big Bang Observer (BBO). The lunar and Martian moon detectors would detect many interesting foreground sources in a new frequency window and could serve as a valuable precursor for BBO.  相似文献   

14.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

15.
Satellite Laser Ranging (SLR) is a powerful technique able to measure spin rate and spin axis orientation of the fully passive, geodetic satellites. This work presents results of the spin determination of LARES – a new satellite for testing General Relativity. 529 SLR passes measured between February 17 and June 9, 2012, were spectrally analyzed. Our results indicate that the initial spin frequency of LARES is f0 = 86.906 mHz (RMS = 0.539 mHz). A new method for spin axis determination, developed for this analysis, gives orientation of the axis at RA = 12h22m48s (RMS = 49m), Dec = −70.4° (RMS = 5.2°) (J2000.0 celestial reference frame), and the clockwise (CW) spin direction. The half-life period of the satellite’s spin is 214.924 days and indicates fast slowing down of the spacecraft.  相似文献   

16.
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.  相似文献   

17.
The 20th century temperature anomaly record is reproduced using an energy balance model, with a diffusive deep ocean. The model takes into account all the standard radiative forcings, and in addition the possibility of a non-thermal solar component. The model is parameterized and then optimized to produce the most likely values for the climate parameters and radiative forcings which reproduce the 20th century global warming. We find that the best fit is obtained with a negligible net feedback. We also show that a non-thermal solar component is necessarily present, indicating that the total solar contribution to the 20th century global warming, of ΔTsolar = 0.27 ± 0.07 °C, is much larger than can be expected from variation in the total solar irradiance alone. However, we also find that the largest contribution to the 20th century warming comes from anthropogenic sources, with ΔTman = 0.42 ± 0.11 °C.  相似文献   

18.
We present the results of analysis XMM-Newton data of galaxy cluster CL0016+16, which enables us to trace X-ray emission and temperature profile up to the virial radius. We obtained similar results using three different backgrounds. We checked the possibility of detection of cluster emission up to the virial radius with XMM-Newton data with hydrodynamical cosmology simulation from the Adaptive Mesh Refinement technique, code RAMSES by Teyssier [Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. A&A 385, 337, 2002], convolution with XMM-Newton and the data base of the spectra by Sauvageot et al. [Sauvageot, J.-L., Belsole, E., Pratt, G.W. The late merging phase of a galaxy cluster: XMM EPIC observations of A 3266. A&A, 444, 673, 2005]. For the first time we were able to compute the mass of CL0016 up to R200, we found, assuming hydrostatic equilibrium framework, M200 = (1.15 ± 0.11) × 1015M.  相似文献   

19.
Supergiant fast X-ray transients are a subclass of high mass X-ray binaries displaying a peculiar and still poorly understood extreme variability in the X-ray domain. These sources undergo short sporadic outbursts (LX∼LX 1036–1037 erg s−1), lasting few ks at the most, and spend a large fraction of their time in an intermediate luminosity state at about LX∼LX 1033–1034 erg s−1. The sporadic and hardly predictable outbursts of supergiant fast X-ray transients were so far best discovered by large field of view (FOV) coded-mask instruments; their lower luminosity states require, instead, higher sensitivity focusing instruments to be studied in sufficient details. In this contribution, we provide a summary of the current knowledge on supergiant fast X-ray transients and explore the contribution that the new space mission concept LOFT, the Large Observatory for X-ray Timing, will be able to provide in the field of research of these objects.  相似文献   

20.
We present a forward modelling technique for calculating the surface X-ray spectra for a variety of lunar terrains. Our calculations considered variations in solar fluxes from solar quiescent condition to large flare activity (M1 flare), and expected elemental concentrations in the target, as well as yield, instrumental, and viewing geometry parameters for X-ray induced fluorescence from the lunar surface. Additionally, we present estimates of anticipated XRF signals from prominent Kα lines observable by a collimated 14 cm2 X-ray detector from a 100 km lunar orbit with ∼20 km spatial resolution. Our results show that Mg, Al and Si characteristic Kα lines can be observed for all solar conditions. The Ca Kα lines line can be differentiated from a fixed background during more energetic solar conditions such as C1 and M1 flares, whereas Ti and Fe lines are identifiable only during C1 and M1 solar flare conditions for Apollo 12 site composition. Both the Kα X-ray intensity ratios of Mg/Si and Al/Si correlate well with concentration ratios of Mg/Si and Al/Si, respectively, for B1 and M1 solar conditions. The Kα X-ray intensity ratios of Fe/Si and Ca/Si correlates with concentration ratios of Fe/Si and Ca/Si, respectively, for M1 solar condition. In principle, the modelling technique outlined here can be used to determine absolute elemental abundances (Mg, Al, Si, Ca, Ti and Fe) from X-ray spectra measured during recent and future lunar missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号