首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is growing evidence that the hard X-ray background (XRB) can be explained by a large population of obscured AGN. I review some of the results of recent deep X-ray surveys, and in particular I discuss the nature of the X-ray luminous emission-line galaxies which have emerged at the faintest X-ray fluxes. If obscured AGN do explain the XRB, a direct implication is that the majority of the energy produced by accretion in the universe is absorbed and not emitted directly. Deep submillimetre surveys with SCUBA have recently attracted a lot of attention, with the potential to allow us an unobscured view dust-enshrouded starformation at high redshift. It has generally been assumed that these sources are purely high redshift starforming galaxies, but if models for the XRB are correct then a significant fraction (∼20%) could contain a luminous AGN.  相似文献   

2.
We have found compact, near-nuclear X-ray sources in 21 (54%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 – 2.4 keV) of these compact X-ray sources are ∼1037 – 1040 erg s−1. The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ∼390 pc. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Γ ≈ 2.5) spectral slope. A multicolor disk blackbody plus power-law model fits the data from the spiral galaxies well, suggesting that the X-ray objects in these galaxies may be similar to a black hole candidate (BHC) in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ≈ 0.7 keV) gas dominates the emission. The fact that the spectral slope of the spiral galaxy sources is steeper than in normal type 1 active galactic nuclei (AGNs) and that relatively low absorbing columns (NH ≈ 1021 cm−2) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral galaxies may be BHCs, low-luminosity AGNs, or possibly X-ray luminous supernovae. We estimate the black hole masses of the X-ray sources in the spiral galaxies (if they are BHCs or AGNs) to be ∼102–103 M. The X-ray sources in the elliptical galaxies may be BHCs, AGNs or young X-ray supernova also.  相似文献   

3.
Changes in Eddington accretion ratios are thought to result in X-ray spectral index changes in Galactic binary black hole systems. Objects with higher Eddington ratios have softer X-ray spectra. Can we apply this result to much more massive black hole systems such as QSOs? If so, X-ray observations will give us valuable insight into the physics of QSOs. Among QSOs, X-ray spectral index is part of a large set of correlated optical and UV observational properties, especially optical Fe II and [O III] strengths in the Hβ region. To investigate whether this set of correlations is related to Eddington ratio, we use as probes, BALQSOs that have been suggested to be youthful super-accretors. We conducted infrared spectroscopy of the Hβ rest wavelength region for a sample of BALQSOs and compared line measurements with those for high and low redshift non-BAL QSOs. Hβ line widths and bolometric luminosity are used to calculate QSO black hole masses and Eddington ratios. Our results support the hypothesis that optical Fe II and [O III] line strengths are Eddington ratio indicators in QSO central engines. A possible explanation is that strong Fe II and weak [O III] indicate abundant cold gas that could fuel near Eddington accretion.  相似文献   

4.
The detection of a bright optical emission measured with good temporal resolution during the prompt phase makes GRB 060111B a rare event that is especially useful for constraining theories of the prompt optical emission. Comparing this burst with other GRBs with evidence of optical peaks, we find that the optical peak epoch (tp) is anti-correlated with the high energy burst energetic assuming an isotropic energy release (Eiso) in agreement with Liang et al. (2009), and that the steeper is the post-peak afterglow decay, the less is the agreement with the correlation. GRB 060111B is among the latters and it does not match the correlation. The Cannonball scenario is also discussed and we find that this model cannot be excluded for GRB 060111B.  相似文献   

5.
We discuss the potential (charge) on dust particles in various environments. We first consider the classical case of a single isolated dust particle. In conditions which apply to planetary dust rings, the exact value of the dust potential depends critically on several effects (e.g. secondary electron emission, photoelectric efficiency) which are not well known for small dust particles of relevant material and surface conditions. In dust clouds of high dust densities the classical approach fails to give the correct value of the dust potential due to the neglect of collective effects. In terms of an ordering parameter P = aμNd0/n0 (dust radius in microns × cloud dust density/exterior plasma density) the collective effects on the dust potential become apparent at P ~ 10?6. For increasing values of P the collective effects increase, whence the dust potentials decrease and eventually approach zero.  相似文献   

6.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

7.
Millimeter-wave continuum observations of high redshift (z3) radio loud quasars (RLQs) and radio intermediate quasars (RIQs) have been performed with the 45 m telescope of the Nobeyama Radio Observatory. Sixteen RLQs with S5GHz > 200 mJy and nine RIQs with 200 mJy > S5GHz > 20 mJy were observed at four millimeter-wave frequencies. All the observed quasars have synchrotron spectra and their possible dust emission component is obscured by the synchrotron emission in millimeter-wave frequencies, which can be explained by their strong AGN activities. Observed quasars are classified into three spectral classes, according to their millimeter-wave spectral index as steep spectrum, millimeter turn over and extreme flat spectrum quasars. Extreme flat spectrum quasars have relatively flat spectra up to 150 GHz, where the rest frequency is higher than 600 GHz. This is an indication that the objects are in very young stage of quasar evolution and shows higher nuclear activity than lower redshift quasars. One of the QSOs, 2358+189 previously known as a RIQ, is found to have extreme flat spectrum, and is now classified as RLQs.  相似文献   

8.
Since 1960s, the gravitational potential of the Moon has been extensively studied from Doppler tracking data between a ground station and spacecraft orbiting in front of the Moon (e. g., Lorell and Sjogren, 1968; Bills and Ferrari, 1980; Konopliv et al., 1993; Lemoine et al., 1997). Because direct radio communication is interrupted while spacecraft is orbiting behind the Moon, however, the coverage of tracking data has been limited mostly to the nearside of the Moon so far. In order to compensate for such lack of tracking data, we propose satellite-to-satellite Doppler measurement by using a relay subsatellite in Japanese mission to the Moon in 2003. A complete coverage of Doppler tracking from an orbiter at sufficiently low altitude will significantly improve lunar gravity model and will contribute for future geophysical study of interior and tectonics on the Moon. Further, we propose differential VLBI experiment between the subsatellite and a propulsion module landed on the surface of the Moon. The differential VLBI is about 10 times more accurate than conventional Doppler measurement for long-wavelength gravity field. Besides, differential VLBI is sensitive to the displacement perpendicular to the line of sight. Thus the VLBI experiment provides precise estimates of the lunar gravity potential at low degree. The last proposal for selenodetic experiments is a laser altimeter. Global topography model has been already developed from the analysis of Clementine LIDAR data (Zuber et al., 1994), but it is suggested that the model includes appreciable anisotropy between NS and E-W directions due to highly eccentric orbit of Clementine spacecraft (Bills and Lemoine, 1995). The laser altimeter experiment from an orbiter in nearly circular orbit will provide a new reference for the isotropic lunar topography model.  相似文献   

9.
M(3000)F2 estimation of hmF2 based on four different formulated models viz: (1) Shimazaki (1955) (2) Bradley and Dudeney (1973), (3) Dudeney (1974) and (4) Bilitza et al. (1979) at an equatorial station in West Africa during low solar activity period (1995) are used to validate its conformity with observed and International Reference Ionosphere (IRI) model. Local time analyses of data from fifteen (15) selected days during the January and July solstices and April and October equinoxes are used. The results obtained show that the M(3000)F2 estimation of hmF2 from the ionosonde-measured values using the Ionospheric Prediction Service (IPS-42) sounder compared to the observed values which were deduced using an algorithm from scaled virtual heights of quiet day ionograms are highly correlated with Bilitza model. International Reference Ionosphere (IRI 2007) model for the equatorial region also agrees with the formulation developed by Bilitza et al. (1979) for the four different seasons of the year. hmF2 is highest (425 km) in summer (June solstice) season and lowest (386 km) in autumn (September equinox) season with daytimes peaks occurring at 11001200 LT during the solstices and at 1000 LT during the equinoxes respectively. Also, the post-sunset peaks are highest (362 km) at the spring (March equinox) and lowest (308 km) at the summer (June solstice) both occurring between 1800 and 2000 LT.  相似文献   

10.
We present the results of analysis XMM-Newton data of galaxy cluster CL0016+16, which enables us to trace X-ray emission and temperature profile up to the virial radius. We obtained similar results using three different backgrounds. We checked the possibility of detection of cluster emission up to the virial radius with XMM-Newton data with hydrodynamical cosmology simulation from the Adaptive Mesh Refinement technique, code RAMSES by Teyssier [Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. A&A 385, 337, 2002], convolution with XMM-Newton and the data base of the spectra by Sauvageot et al. [Sauvageot, J.-L., Belsole, E., Pratt, G.W. The late merging phase of a galaxy cluster: XMM EPIC observations of A 3266. A&A, 444, 673, 2005]. For the first time we were able to compute the mass of CL0016 up to R200, we found, assuming hydrostatic equilibrium framework, M200 = (1.15 ± 0.11) × 1015M.  相似文献   

11.
A preliminary analysis of infrared observations of comets P/Crommelin and P/Tempel 1 is presented. Comet P/Crommelin was observed from UKIRT over the range 1–20 micron, using standard filters. From the shape of the thermal emission spectrum, the temperature of the dust grains is estimated (T = 314 ± 3344K) and also the dust production rate (1.3 × 105gs?1). Comet P/Tempel 1 was observed with the Infrared Astronomical Satellite (IRAS). The emission is found to be considerably extended and there is also evidence for temperature variation of the dust grains as indicated by the 12 to 25 micron flux ratio.  相似文献   

12.
We examine various observable signatures of the first generation of stars and low-luminosity quasars, including the metal enrichment, radiation background, and dust opacity/emission that they produce. We calculate the formation history of collapsed baryonic halos, based on an extension of the Press-Schechter formalism, incorporating the effects of pressure and H2-dissociation. We then use the observed C/H ratio at z=3 in the Lyman-α forest clouds to obtain an average the star formation efficiency in these halos. Similarly, we fit the efficiency of black-hole formation, and the shape of quasar light curves, to match the observed quasar luminosity function (LF) between z=2−4, and use this fit to extrapolate the quasar LF to faint magnitudes and high redshifts. To be consistent with the lack of faint point-sources in the Hubble Deep Field, we impose a lower limit of ∼ 75 km s−1 for the circular velocities of halos harboring central black holes.We find that in a ΛCDM model, stars reionize the IGM at zreion=9−13, and quasars at z=12. Observationally, zreion can be measured by the forthcoming MAP and Planck Surveyor satellites, via the damping of CMB anisotropies by ∼10% on small angular scales due to electron scattering. We show that if reionization occurs later, at 5 ≲ zreion ≲ 10, then it can be measured from the spectra of individual sources. We also find that the Next Generation Space Telescope will be able to directly image about 1–40 star clusters, and a few faint quasars, from z >10 per square arcminute. The amount of dust produced by the first supernovae has an optical depth of τ=0.1−1 towards high redshift sources, and the reprocessed UV flux of stars and quasars distorts the cosmic microwave background radiation (CMB) by a Compton y-parameter comparable to the COBE limit, y ∼ 1.5 × 10−5.  相似文献   

13.
Extragalactic research studies by the Harvard/Smithsonian group with the Einstein Observatory have emphasized quasars and clusters of galaxies. More than 100 QSO's have been detected, including 20 serendipitous discoveries. The ratio of Lx/Lo for radio loud quasars is on the average 3 times that of radio quiet ones. QSO's with a large intrinsic optical luminosity have a smaller ratio of Lx/Lo. X-ray images of clusters of galaxies reveal a variety of morphological types which may correspond to different stages in their evolution. Several examples of bi-modal clusters have been discovered. An X-ray plume associated with M86 is apparently gas being stripped. From X-ray studies, a mass between 1.7 × 1013Mθ and 4.0 × 1013 Mθ has been derived for M87.  相似文献   

14.
Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ  0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05–0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ  0.5 from one side, and ground-based observations in the UV–visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.  相似文献   

15.
Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.  相似文献   

16.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

17.
We present the preliminary results of the recent Hα narrow-band imaging carried out for NGC 2770 with the Gran Telescopio Canarias (GTC) equipped with OSIRIS. We put the polarization measurements reported in Gorosabel et al. (2010) for SN 2007uy and SN 2008D in the context of the morphological information inferred from the Hα imaging. We estimated the orientation of the interstellar polarization (ISP) at the position of SN 2007uy and, most interestingly, at the site of SN 2008D which has been subject of an intensive debate due to its possible connection with Gamma-Ray Bursts (GRBs). The Hα imaging reveals a clumpy interstellar medium (ISM) composed of hundreds of compact emitting regions, for which we determined their sizes. The derived size for the Hα emitting region coincident with SN 2008D is consistent with the ISM cell size limits imposed by Gorosabel et al. (2010) based on millimetric data. A deeper data analysis is under way and will be published elsewhere. This article represents the first attempt to study the site of a possible GRB-like event combining millimetric, polarimetric and narrow-band data.  相似文献   

18.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

19.
A possible gluon-condensate-induced modified-gravity model with f(R) ∝ ∣R1/2 has been suggested previously. Here, a simplified version is presented using the constant flat-spacetime equilibrium value of the QCD gluon condensate and a single pressureless matter component (cold dark matter, CDM). The resulting dynamical equations of a spatially-flat and homogeneous Robertson-Walker universe are solved numerically. This simple empirical model allows, in fact, for a careful treatment of the boundary conditions and does not require a further scaling analysis as the original model did. Reliable predictions are obtained for several observable quantities of the homogeneous model universe. In addition, the estimator EG, proposed by Zhang et al. to search for deviations from standard Einstein gravity, is calculated for linear sub-horizon matter-density perturbations. The QCD-scale modified-gravity prediction for EG(z) differs from that of the ΛCDM model by about ±10% depending on the redshift z.  相似文献   

20.
This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth’s J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号