首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Accretion onto black holes powers most luminous compact sources in the Universe. Black holes are found with masses extending over an extraordinary broad dynamic range, from several to a few billion times the mass of the Sun. Depending on their position on the mass scale, they may manifest themselves as X-ray binaries or active galactic nuclei. X-ray binaries harbor stellar mass black holes—endpoints of the evolution of massive stars. They have been studied by X-ray astronomy since its inception in the early 60-ies, however, the enigma of the most luminous of them—ultra-luminous X-ray sources, still remains unsolved. Supermassive black holes, lurking at the centers of galaxies, are up to hundreds of millions times more massive and give rise to the wide variety of different phenomena collectively termed “Active Galactic Nuclei”. The most luminous of them reach the Eddington luminosity limit for a few billions solar masses object and are found at redshifts as high as z≥5–7. Accretion onto supermassive black holes in AGN and stellar- and (possibly) intermediate mass black holes in X-ray binaries and ultra-luminous X-ray sources in star-forming galaxies can explain most, if not all, of the observed brightness of the cosmic X-ray background radiation. Despite the vast difference in the mass scale, accretion in X-ray binaries and AGN is governed by the same physical laws, so a degree of quantitative analogy among them is expected. Indeed, all luminous black holes are successfully described by the standard Shakura-Sunyaev theory of accretion disks, while the output of low-luminosity accreting black holes in the form of mechanical and radiative power of the associated jets obeys to a unified scaling relation, termed as the “fundamental plane of black holes”. From that standpoint, in this review we discuss formation of radiation in X-ray binaries and AGN, emphasizing their main similarities and differences, and examine our current knowledge of the demographics of stellar mass and supermassive black holes.  相似文献   

2.
I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on “best practices” that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5×107 M ) and low (M<2×106 M ) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GRO J1655–40 and 4U 1543–475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC 4151, NGC 7314 and MCG–5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.  相似文献   

3.
Conclusions X-ray variability is seen in all types of AGN but large amplitude ( factor 2) outbursts on short timescales (days) occur rarely, perhaps once every 100 days. There is no strong dependence of variability on luminosity, but radio-powerful AGN, particularly BL Lacs and 0VV QS0s, do vary most. Sensitive detectors, such as the EXOSAT ME, have been able to detect variability of smaller amplitude (20%) and on shorter timescales (1 hour) than previous experiments, but this too is not common. There is very little evidence of spectral variability during changes in intensity and so it is very likely that such changes are total power variations and not artefacts of variable obscuration. The variability timescales imply that most Seyfert galaxies are emitting well below the Eddington limit. On efficiency considerations only two observations of X-ray variability, those of the QS01525+227 and the BL Lac H0322+022, require exotic black hole models, relativistic beaming, or a change in the assumed value of H0. The most dramatic observation of variability so far reported, that of repeated variations on a timescale of 4000 seconds in NGC4051 is probably related to a hydrodynamical timescale in the accretion disc and encourages us to believe that, with future observations, our understanding of AGN may approach that of galactic X-ray sources.Many Seyferts do have a canonical =0.7 spectral index, but it is becoming increasingly clear that a wide variety of spectral indices exist, both in Seyfert galaxies and in other classes of AGN. Both thermal and non-thermal emission mechanisms are tenable explanations for most of these spectra as, in general, the very high energy observations which could distinguish between the two are not available.Timing observations rarely require relativistic beaming, however, the (low) observed X-ray fluxes of BL Lacs and 0VV QS0s generally do. reacceleration of particles on short timescales is necessary to explain the continuous infrared to X-ray spectra of BL Lacs.The status of soft excesses in the low energy spectra of Seyfert galaxies which have canonical medium energy spectra is not clear. A separate soft component has been detected in EXOSAT observations of NGC4151 but this need not be associated with the nuclear continuum source. No SSS or EXOSAT observations definitely require such excesses. EXOSAT is, in principle, very sensitive to soft excesses but the uncertainty in the Boron filter calibration and in the value of the galactic absorption at present limit precise determinations.The absorbing column in the direction of many AGN is, in many cases, entirely accountable for purely by absorption in our own galaxy. In cases where a substantial absorbing column is detected, variations in the column are occasionally seen but it is not yet clear whether these variations are due to bulk movements of obscuring material or increased photoionisation (warm absorbers). All observations of iron lines are consistent with fluorescence in a cold gas which probably surrounds the X-ray emitting region in a sphere or shell-type geometry, though (by Gauss' law) this need not necessarily lie immediately next to the central black hole.Detailed observations of the time-variability of the complete X-ray to radio spectrum offer the best hope of further progress in this complex but interesting field.  相似文献   

4.
Highly ionised winds with velocities ~0.1–0.2c were first detected in X-ray spectra of non-BAL AGN a decade ago. Subsequent observations and archival searches have shown such winds to be a common feature of luminous AGN, increasing the belief that powerful ionised winds have a wider importance in galaxy feedback models. Paradoxically, for the best-quantified high velocity outflow (the luminous Seyfert PG1211+143) the wind appears too powerful to be compatible with the observed stellar bulge and black hole masses, suggesting the energy coupling of wind to bulge gas must be inefficient. A recent XMM-Newton observation of the narrow line Seyfert NGC 4051 offers an explanation of this apparent paradox, finding evidence for the fast ionised wind to lose most of its kinetic energy after shocking against the ISM. Importantly, the wind momentum is maintained through such a shock, supporting the view that a momentum-driven flow provides the critical link between black hole and stellar bulge growth implied by the observed Mσ relationship.  相似文献   

5.
Multiwavelength variability data, combined with spectral-timing analysis techniques, provides information about the causal relationship between different physical components in accreting black holes. Using fast-timing data and long-term monitoring, we can probe the behaviour of the same components across the black hole mass scale. In this chapter we review the observational status of multiwavelength variability in accreting black holes, from black hole X-ray binaries to AGN, and consider the implications for models of accretion and ejection, primarily considering the evidence for accretion disc and jet variability in these systems. We end with a consideration of future prospects in this quickly-developing field.  相似文献   

6.
The X-ray Nova GRO J0422+32 in its low brightness has been identified with a B 21 m , R20 m star on Palomar Sky Survey glass copies. The scans obtained with an automatical microdensitometer along with our special PC program were used. The resulting outburst amplitude 8 m is one of similarity features for the class of the low mass X-ray Novae, black hole candidates.  相似文献   

7.
A 7 hour observation of the central part of the Coma Cluster of galaxies has been performed with the EXOSAT LE telescopes and CMA detectors. Five serendipitous sources are detected within the inner 35 arcmin radius of the field. Optical spectroscopy demonstrates that at least three of these are background AGN not associated with the cluster. At the sensitivity level of the EXOSAT exposure, we would have expected to see only 0.01 background sources based on the Einstein Medium Sensitivity Survey. The EXOSAT and Einstein results may be reconciled if these AGN have a much softer average X-ray spectrum than previously assumed.  相似文献   

8.
The empirical properties of the various dynamic phenomena are reviewed and interrelated with emphasis on recent observational results. The topics covered are:
  1. Introduction
  2. Aperiodic Phenomena
  3. Externally Driven Phenomena
  4. Umbral Flares
  5. Inverse Evershed Flow
  6. Internally Driven Phenomena
  7. Penumbra
  8. Penumbral Grains
  9. Evershed Flow
  10. Umbra
  11. Umbral Dots
  12. Inhomogeneity of the Umbral Magnetic Field
  13. Umbral Turbulence
  14. Oscillations and Waves
  15. Chromosphere
  16. Umbra: Oscillations and Flashes
  17. Penumbra: Running Waves and Dark Puffs
  18. Photosphere
  19. Overview
It is proposed from the observations that umbral dots and penumbral grains are essentially the same phenomenon, and that the observational goal of highest priority with respect to both the origin of the periodic phenomena and the problem of the missing heat flux is to better determine the nature of these elementary bright features.  相似文献   

9.
We review the hadronic model for Active Galactic Nuclei (AGN). This model, which can be applied to all AGN, advocates the acceleration of protons to ultrarelativistic energies by shock fronts which are formed a few Schwarzschild radii away from the central black hole. The necessary consequences of this hypothesis are discussed. These include the formation of electromagnetic cascades which are initiated by the injection of secondary electrons and photons inside the source, as well as the production and escape of neutrons and neutrinos. As a result of the neutron escape we emphasize that AGN can be sources of TeV radiation.  相似文献   

10.
The requirements of systematic exploration of the outer solar system have been intensively studied by a Science Advisory Group (SAG) of consulting scientists for the National Aeronautics and Space Administration (NASA). Comets and Asteroids were excluded from this study, as a separate group is planning missions to these bodies. This paper and accompanying articles on specific related scientific subjects written by members of the SAG, summarize the findings and recommendations of this group. These recommendations should not be interpreted as official NASA policy. Following some general introductory remarks, a brief sketch is given of the development and current status of scientific missions to the inner planets by the U.S. and the U.S.S.R. With this perspective, the development of the U.S. program for investigation of the outer solar system is described. The scientific focus of outer solar system exploration has been studied in detail. The relationship of the outer planetary bodies to one another and to the inner planets, as parts in a unified solar system evolved from a primitive solar nebula, is emphasized. Deductions from outer solar system investigations regarding the conditions of the solar nebula at the time of planetary formation have been considered. Investigations have been proposed that are relevant to studies of the atmospheric structure and dynamics, internal structure of the planets, satellite composition and morphology, and planetary and interplanetary fields and energetic particles. The mission type and sequence required to conduct a systematic exploration of the outer solar system has been developed. Technological rationales for the suggested missions are discussed in general terms. The existing NASA program for outer solar system exploration is comprised of four missions:
  1. Pioneer 10 fly-by mission to Jupiter and beyond, currently underway, with launch on 3 March 1972;
  2. Pioneer G, intended for a similar mission with planned launch 2–22 April 1973; and
  3. Two Mariner Jupiter/Saturn fly-bys in 1977, with experiment selection scheduled for late 1972 and detailed engineering design during 1972–74.
The Science Advisory Group advocates that detailed mission planning be undertaken on the following additional missions for launches during the late 1970's and early 1980's. Together with existing plans, these would provide a balanced, effective exploration program.
  1. 1976 Pioneer Jupiter/Out-of-Ecliptic (One Mission)
  2. 1979 Mariner Jupiter/Uranus Fly-bys (Two Missions)
  3. 1979 Pioneer Entry Probe to Saturn 1980 Pioneer Entry Probe to Uranus via Saturn Fly-by (Three Missions)
  4. 1981/1982 Mariner Jupiter Orbiter (Two Missions).
  相似文献   

11.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

12.
13.
We review results of correlated IR, optical and X-ray observations of GX 339-4 made from March 1981 through May 1984. In the soft X-ray state, the object does not show outstanding optical and X-ray variability. Night-to-night smooth optical variations of 0.3 magnitudes were however present during one observing run. In contrast, the hard X-ray state is characterised by strong erratic optical and X-ray fluctuations on time scales from 20 milliseconds to seconds, as well as 7 to 20 second quasi-periodic oscillations. The optical counterpart appears much redder in the IR during the hard state. Particular attention is drawn to the hard to soft X-ray transition which occured in June 1981. The shape of the IR to X-ray energy distribution is discussed. The unusual features of this black hole candidate are examined in the framework of the current theories of accretion.Based partly on observations obtained at the European Southern Observatory, La Silla, Chile.  相似文献   

14.
15.
It is argued that the high-energy X-ray and -ray emission from flaring blazars is beamed radiation from the relativistic jet supporting the relativistic beaming hypothesis and the unified scenario for AGNs. Most probably the high-energy emission results from inverse Compton scattering by relativistic electrons and positrons in the jet of radiation originating external to the jet plus pair annihilation radiation from the jet. Future positive TeV detections of EGRET AGN sources will be decisive to identify the prominent target photon radiation field. Direct -ray production by energetic hadrons is not important for the flaring phase in -ray blazars, but the acceleration of energetic hadrons during the quiescent phase of AGNs is decisive as the source of secondary electrons and positrons through photo-pair and photo-pion production. Injection of ultrahigh energy secondary electrons and positrons into a stochastic quasilinear acceleration scheme during the quiescent AGN phase leads to cooling electron-positron distribution functions with a strong cut-off at low but relativistic energy that under certain local conditions may trigger a plasma instability that gives rise to an explosive event and the flaring -ray phase.  相似文献   

16.
In-situ spectral observations of power-line harmonic radiation (PLHR) are still quite rare and almost all the detailed characteristics have been derived from studies at Antarctic stations such as Siple and Halley, and their conjugates in North America. Because of the lack of more direct satellite evidence of PLHR and the difficulties in interpretation of morphological studies, such as those of Ariel 3 and 4, there is considerable controversy concerning the relative importance of PLHR and its contribution to wave-particle interactions (WPI) in the magnetosphere. The early Ariel 3 and 4 global surveys indicated that, in terms of true mean wave energy, there is no longitudinal localisation, the contribution of world-wide intense VLF emissions, associated with magnetic storms, being dominant. Also, the most intense wave emission, that of plasmaspheric hiss at ELF (< 1 kHz) exhibits little evidence of localisation. The PLHR phenomenon is most conspicuous by its persistence in quiet times (Kp ≤ 2+) at 45° < Λ < 55° over North America and its conjugate region, even though the less frequent strongest emissions, to which it gives rise in the summer, are located polewards at 3 < L < 5. In the northern winter, when spheric activity over both North America and its conjugate are low, there is a high occurrence of strong discrete emissions, which are more sharply localised than in the summer, on the NE industrial U.S.A. field line. The most recent Ariel 4 studies, particularly on the spheric wavefield over North America (using data from the Appleton Laboratory impulse counters) and on the character of the wavefield over the mainland and over the Atlantic immediately to the east (where the spheric contribution is similar) throw new light on the problem. It appears that the principal role of the PLHR may be to sustain duct structure and multihop propagation which is relatively much rarer over the Atlantic. Typical industrial PLHR consists of a series of narrow pulses at twice the mains frequency. It is suggested that these ‘artificial spherics’ may help to sustain the WPI and multihop duct structure. At L = 4, Yoshida et al. (1980) have shown that there is a strong, sharp maximum for WPIs originating in spherics, at f ? 3 kHz, in good agreement with Siple observations.  相似文献   

17.
The ionosphere of Mars has been explored mostly with the radio occultation experiment onboard Mariners 6, 7, 9; Mars 2, 3, 4, 6; Viking 1, 2, and more recently on Mars Global Surveyor (MGS) and Mars Express (MEX). In addition to the radio occultation experiment, MEX also carried Mars Advanced Radar for the Subsurface and Ionosphere Sounding (MARSIS) experiment which provided electron density profiles well above the main ionospheric peak. The atmosphere of Mars was measured directly by the neutral mass spectrometer onboard Viking 1 and 2 Landers. Later, an accelerometer and radio occultation experiment on MGS provided large data sets of atmospheric density at various locations in the upper and lower atmospheres of Mars, respectively. In this paper we review results of these upper and lower atmospheric/ionospheric measurements. Results of these measurements have been compared with theoretical models by several workers; therefore, we also review various atmospheric and ionospheric models of Mars.  相似文献   

18.
The strongest X-ray point source, LHG 83, discovered in the EINSTEIN survey of the LMC and not being associated with a nearby coronal type stellar emitter or background AGN is identified with a faint blue variable object. Spectrophotometry reveals low mass X-ray binary characteristics at a mean velocity consistent with LMC membership. The He II 4686 emission exhibits a unique blue shifted component suggesting outflow velocities of several thousand km/s. Optical brightness changes by 0.3 mag in less than one hour are likely to be intrinsic to the source rather than induced by orbital motion. The low X-ray to optical flux ratio is probably due to the fact that the central X-ray source is blocked from direct view by the accretion disk.Based on observations obtained at ESO, La Silla, Chile  相似文献   

19.
The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole’s accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a ? of the black hole (|a ?|<1). The ten spins that have so far been measured by this continuum-fitting method range widely from a ?≈0 to a ?>0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.  相似文献   

20.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号