首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
非结构网格在积冰数值模拟中的应用   总被引:1,自引:1,他引:0  
基于非结构网格对翼型表面的积冰进行了数值模拟研究.通过求解气体欧拉方程得到翼型的绕流流场,使用穿透型壁面边界模拟水滴对翼型表面的撞击,采用迭代法对水滴控制方程进行数值求解,得到翼型表面的水滴收集特性;采用不同的积冰冻结模型模拟霜冰和明冰的冻结过程;利用冰层时间推进法模拟积冰过程,基于积冰法向生长假设生成积冰外形.对NA...  相似文献   

2.
翼型表面明冰的数值模拟   总被引:5,自引:5,他引:0  
提出一种翼型表面明冰的数值模拟方法.基于欧拉两相流理论,建立空气、水滴两相流控制方程;提出一种可穿透型壁面边界模拟水滴对翼型表面的撞击;采用考虑了粗糙度影响的边界层积分法求解结冰表面的对流换热特性,基于经典Messinger模型提出明冰数值模拟的热力学模型;利用冰层时间推进法模拟积冰过程,采用积冰法向生长假设生成积冰外形.对NACA 0012翼型在不同环境温度下的明冰冰形进行了预测,并与实验结果进行了对比.   相似文献   

3.
飞机机翼表面霜冰的三维数值模拟   总被引:4,自引:3,他引:1  
张强  曹义华  钟国 《航空动力学报》2010,25(6):1303-1309
基于欧拉两相流理论对三维情况下飞机机翼表面的霜冰进行了数值模拟.根据水滴拟流体模型建立三维水滴控制方程;提出一套水滴控制方程的数值求解方法;由三维水滴流场的求解结果计算机翼表面的水滴收集特性,提出一种三维积冰外形的生成方法,完成了对飞机机翼表面霜冰的三维数值模拟.对ONERA M6机翼在不同迎角下霜冰的积冰情况进行了数值预测,并分析了结冰条件对积冰的影响.   相似文献   

4.
考虑传质传热效应的翼型积冰计算   总被引:6,自引:0,他引:6  
本文采用计算流体力学的方法对NACA0012翼型前缘涉及传质传热效应的glaze ice积冰进行了预测.在流场计算中,用有限体积法对二维定常不可压粘流的时均N-S方程进行离散求解;采用四阶龙戈-库塔(RK)法求解水滴运动方程;通过求解在翼型表面控制体积内积冰过程中所遵循的质量和能量守恒方程,并且假定冰沿着与当地翼型表面法向一致的方向增长,来预测积冰的形状.文中同时对结有glaze ice冰翼型的气动特性进行了计算与分析.  相似文献   

5.
多段翼构型的积冰数值模拟   总被引:1,自引:0,他引:1  
张强  高正红  傅林 《航空动力学报》2011,26(7):1465-1470
基于非结构网格提出一种针对多段翼构型的积冰数值模拟方法.通过求解气体欧拉方程得到多段翼的绕流流场,基于空气绕流流场的气流速度分布,采用迭代法对水滴控制方程进行数值求解,得到多段翼各翼面的水滴收集特性;采用不同的积冰冻结模型模拟霜冰和明冰的冻结过程;利用冰层时间推进法模拟积冰过程,基于积冰法向生长假设生成积冰外形.对某典型三段翼霜冰和明冰的结冰情况进行了预测研究,根据多段翼的流场特点提出一种明冰冻结模型的求解思路,并分析了积冰对多段翼性能的影响.   相似文献   

6.
翼型积冰的数值模拟   总被引:13,自引:1,他引:13  
本文采用计算流体力学的方法对NACA0012翼型前沿的Rimeice积冰进行了预测。在流场计算中,用有限体积(FV)法对二维定常不可压粘流的时均N-S方程进行离散求解;采用四阶龙戈-库塔(RK)法求解水滴运动方程;假定水滴在与翼型相碰撞的点处完全凝结,并且冰沿着与当地翼型表面法向一致的方向增长,以此来预测积冰的形状。文中同时对迎角为4°时结冰翼型的气动特性进行了分析。  相似文献   

7.
二元翼型结冰数值模拟研究   总被引:1,自引:0,他引:1  
对二元翼型前缘结冰数值模拟进行了研究。采用中心有限体积法求解N—S方程;四阶龙格一库塔法求解水滴运动轨迹方程;逐次二分法寻找水滴撞击极限,然后计算局部水滴收集率;分析翼型表面的传质、传热项,建立相应质量、能量方程并迭代求解,得到翼型表面结冰质量;根据角度二分法生成结冰冰形。预测的NACA0012结冰冰形与实验及Lewice模拟结果吻合很好,结冰过程中的特征参数与冰型及相应冰形特征吻合。  相似文献   

8.
过冷水滴撞击三维机翼的数值模拟   总被引:5,自引:3,他引:2  
张强  胡利  曹义华 《航空动力学报》2009,24(6):1345-1350
基于欧拉两相流理论,提出一种数值模拟过冷水滴撞击三维机翼的方法.根据水滴拟流体模型建立三维水滴控制方程;提出一种可穿透型壁面边界模拟水滴对机翼表面的撞击;由水滴流场的求解结果得到机翼表面的水滴收集特性.对ONERA M6机翼表面的水滴收集特性进行了研究,计算结果表明所提出的数值模拟方法是有效、可行的,可以为三维积冰的数值模拟研究奠定良好的基础.   相似文献   

9.
讨论了积冰气象条件下翼型积冰过程的非结构动态网格数值模拟方法.外部无黏绕流流场采用基于非结构网格的分布式并行计算技术,空间离散采用VanLeer迎风有限体积格式,时间推进为5步显式龙格-库塔方法.采用四阶龙格-库塔方法求解过冷水滴运动轨迹方程,使用了一种合理、简单的物面水积冰量计算方法,提高了计算效率.使用非结构动态网格技术对积冰后的翼型网格进行快速调整.在对NACA0012翼型积冰形状进行校核验证后,对某型飞机在积冰气象条件下飞行时翼型积冰过程进行了数值模拟,得到了与参考文献结果相符的冰形特性.  相似文献   

10.
模拟飞机迎风面三维积冰的数学模型   总被引:4,自引:2,他引:2  
针对飞机迎风面的积冰建立了三维积冰模型,给出了模型的求解方法和求解步骤.该模型不但可以模拟明冰积冰、霜冰积冰和不结冰三种情况下的冰层生长,还可以模拟未凝结水膜在冰层表面的流动,而且在求解过程中可以自动判断过冷水滴撞击到迎风面以后的积冰形态.利用该模型数值模拟了翼型与平板相正交而形成的简单三维结构上的积冰过程,并将所得结果中翼型上三维冰形的二维截面与美国航空航天局(NASA)的冰形进行了对比,获得了较好的一致性,证实了所建立的积冰模型是合理的.   相似文献   

11.
李鑫  白俊强  王昆 《航空动力学报》2013,28(12):2663-2670
采用计算流体力学(CFD)方法对三段翼和MS-317后掠翼进行了积冰数值模拟研究,基于欧拉两相流理论,应用分区算法,对空气流场和水滴流场进行了数值求解,得到水滴收集率.求解3-D积冰模型得到积冰量.将MS-317的冰形计算结果与实验数据以及软件LEWICE3D的计算结果进行了对比.结果显示:三维积冰模型具有较好的精度,虽然预测的冰形与实验数据有一些差异,最大厚度方面,误差在13.1%以内,但是积冰的类型与体积和实验数据基本一致.   相似文献   

12.
过冷水滴撞击结冰表面的数值模拟   总被引:20,自引:9,他引:11  
为了计算过冷水滴撞击结冰表面,本文应用雷诺平均Navier-Stokes方程和k-ε两方程紊流模型计算结冰表面外的空气流场。用欧拉法建立了空气中过冷水滴的运动方程,并采用有限控制容积法对方程进行了数值计算。为了提高计算精度,方程中的对流—扩散项采用MUSCL格式进行了离散。计算结果表明过冷水滴的大小和机翼攻角的变化对结冰区的大小和水收集系数的影响很大。   相似文献   

13.
依据飞行器表面液态水凝结过程的热力学理论分析,提出了一种适用于不同环境温度的翼型结冰数值模拟方法.采用中心型有限体积方法求解N-S方程来获得翼型的绕流流场,结合给出的结冰数值模拟方法对两种典型温度下的翼型积冰情况进行了模拟.模拟所得的积冰冰形与文献中的实验数据吻合良好,表明该方法的可行性,并进一步给出了翼型表面的冻结系数分布.  相似文献   

14.
Effects of ice accretions on aircraft aerodynamics   总被引:13,自引:0,他引:13  
This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not adequately removed prior to takeoff. Throughout this review, important voids in the available database are highlighted, as are instances where previous lessons learned have tended to be overlooked.  相似文献   

15.
受DBD等离子体控制的低速流动数值模拟方法研究   总被引:1,自引:0,他引:1  
基于正离子、电子和氧负离子的三组分空气DBD等离子体动力学模型和流体动力学方程,利用有限体积方法处理控制方程空间项,采用双时间步方法模拟非定常过程,对DBD空气等离子体动力学模型方程和流体动力学方程松耦合求解,数值模拟了高压交流电源激励的低速空气等离子体流动过程。仔细研究了一个周期中真实时间步长对模拟DBD等离子体形成过程的影响,给出了等离子体的形成历程以及等离子体对低速翼型边界层流动的影响,结果在定性上是合理的。  相似文献   

16.
采用拉格朗日乘子法优化设计了雷达散射截面约束条件下的锥形融合气动外形.拉格朗日乘子法中的极小化问题采用动态演化的优化设计方法求解.该方法是一种基于非定常演化的优化设计方法,即在求解非定常流动支配方程的时候同时履行优化过程,较其它基于定常解的优化方法具有高得多的计算效率.其中的雷达散射截面通过求解非结构的笛卡儿网格上的时域麦克斯韦方程来得到,而升阻比则通过求解锥形流方程来计算.通过优化设计,得到了M∞=8.0时,升阻比为4.98,雷达散射截面只有1.66m2的锥形融合气动外形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号