首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 350 毫秒
1.
纳秒脉冲等离子体合成射流特性实验研究   总被引:7,自引:4,他引:3       下载免费PDF全文
宗豪华  宋慧敏  梁华  贾敏  李应红 《推进技术》2015,36(10):1474-1478
设计了新型的等离子体合成射流激励器,采用实验方法研究了该激励器的放电特性、合成射流强度特性以及时均冲力特性。实验结果表明:存在一个饱和激励频率使合成射流的强度达到最大值,当射流孔径为1mm和1.5mm时,这一饱和频率分别为4k Hz和6k Hz;随着与出口距离的增加,射流的强度呈指数衰减,射流的影响距离约为10mm;在4k Hz下,激励器所产生的时均冲力随着激励频率的增加而近似线性增加,该时均冲力与单位长度介质阻挡放电(SDBD)激励器所产生的体积力处于同一量级(m N),孔径为1.5mm下的时均冲力约为孔径为1 mm时的两倍。  相似文献   

2.
杜海  史志伟  耿玺  魏德宸 《航空学报》2012,33(10):1781-1790
在前期等离子体激励器基本流场特性研究的基础上,将等离子体激励器应用于微型飞行器(MAV)进行气动控制。当来流速度为9.1 m/s时,在微型飞行器机翼吸力面非对称布置不同的单介质阻挡放电(SDBD)等离子体激励器,通过对未施加激励的偏航、滚转力矩曲线和施加激励的偏航、滚转力矩曲线进行对比,发现横航向气动力距发生很大的改变,可以实现对横航向气动力矩的控制。在此基础上,采用图像测速(PIV)技术,对机翼背风面的流场进行研究,分析产生横航向控制力矩的流动机理。通过改变激励器的输入电压、占空比和调制频率,实现对横航向气动力矩的比例控制。  相似文献   

3.
层流控制、复合材料、全电驱动等创新性航空技术的应用给传统防/除冰方法带来了新的挑战。基于高电压驱动的表面介质阻挡放电等离子体激励新概念防/除冰方法因其没有复杂的机械构造和潜在的气动耗损,从而有潜力成为下一代飞行器采用的防/除冰方法。该综述从飞行过程中的结冰与防/除冰研究、等离子体空气动力与热激励特性研究、等离子体激励防/除冰研究等三个方面,对等离子体防/除冰方法的研究现状和发展趋势进行了分析,指出等离子体防/除冰研究的关键科学问题主要包括:1)以等离子体空气动力与热激励为主要因素的多物理场耦合机制;2)等离子体激励下多物理场非平衡相变演化规律与防/除冰机理。上述科学问题的研究包含了等离子体物理特性、流动控制机理、结冰机理、防/除冰规律等众多流体力学前沿方向,等离子体防/除冰研究的难点在于涉及多物理场耦合和多时间尺度,因此,相应的数值模拟方法与实验观测技术成为解决上述科学问题的关键突破点。探索等离子体激励防/除冰机制以及解决面向工程应用的技术问题,是下一步需要聚焦的研究方向。  相似文献   

4.
等离子体激励器以其结构简单、响应速度快、环境适应性强等优势,已成为主动流动控制技术和流体力学研究的前沿与热点。相比于传统两电极激励器,三电极等离子体高能合成射流激励器具有更高的能量效率,形成射流冲量更大,有望成为新型快响应直接力产生装置。为揭示激励器结构对射流流场和冲量特性的影响规律,进而优化激励器结构参数,利用电参数测量装置、高速阴影系统及自主设计的单丝扭摆式微冲量测量系统对不同射流孔径、腔体体积和电极间距的三电极激励器放电特性、射流流场及其冲量进行了实验研究。为对比激励器在不同工况条件下的工作特性,定义无量纲能量沉积ε和无量纲射流冲量 I *,并分析了激励器结构参数对ε和 I *的影响。结果表明对于给定无量纲能量沉积ε,激励器存在最优射流孔径;激励器无量纲能量沉积ε和无量纲射流冲量I *随腔体体积增加而减小,随激励器电极间距增加而增加;射流强度及其流场影响区域随腔体体积增加而减小,随激励器电极间距增加而增加。对比不同腔体体积和电极间距工况条件下 I *随ε的变化可知,为设计具有较好射流冲量水平的激励器,在相同无量纲能量沉积ε条件下,应尽量增大激励器无量纲射流冲量 I *。当设计激励器无量纲能量沉积ε小于初始工况时,应增大初始工况激励器腔体体积使无量纲能量沉积ε降低至设计值;当设计激励器无量纲能量沉积ε大于初始工况时,应增大初始工况激励器电极间距使无量纲能量沉积ε增加至设计值,使设计激励器具有较好的射流冲量水平。  相似文献   

5.
等离子体激励器控制平板边界层转捩实验研究   总被引:3,自引:1,他引:2  
陆纪椿  史志伟  杜海  胡亮  李铮  宋天威 《航空学报》2016,37(4):1166-1173
在低速射流风洞中,研究了单级介质阻挡放电等离子体激励器对光滑平板边界层转捩位置的控制作用。实验采用热线测量技术,以边界层速度脉动与平均速度型作为转捩判据。实验发现,在来流速度为15 m/s,激励器连续放电参数为输出电压峰峰值11 kV,频率4.7 kHz时,在激励器放电作用下,平板边界层转捩位置推迟约40 mm。在相同的来流条件和激励器布局下,研究了不同放电参数对边界层内速度型,速度脉动以及频谱分布的影响,发现提高放电电压、频率和占空比能进一步推迟转捩。实验结果表明:激励器产生的射流效应可以增强边界层流动的稳定性,随放电电压、频率以及占空比增强,射流能量增大,因此边界层稳定性进一步加强,转捩控制效果也更明显。  相似文献   

6.
低速翼型分离流动的等离子体主动控制研究   总被引:3,自引:0,他引:3  
为了研究等离子体激励器的放电形式及其诱导气流的规律,以及翼型迎角、自由来流速度分别对翼型流动分离抑制效果的影响。在低速、低雷诺数条件下利用介质阻挡放电等离子体激励器对NACA0015翼型进行了主动流动控制研究。结果表明:介质阻挡放电的形式为丝状放电;等离子体激励器诱导气流的方向由裸露电极指向覆盖电极,由电极的布置方式决定,与接线方式无关;当来流速度为25m/s,雷诺数为2.03×10^5时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型最大升力系数增大约为9.7%,翼型l临界失速迎角由17.5°增大到20.5°;翼型失速延迟的真正原因并非单纯的气流加速;等离子体激励器的作用效果随着来流速度的提高而减弱,研究非定常激励或等离子体激励器与流场之间的耦合效应,也许更加具有潜力。  相似文献   

7.
射频介质阻挡放电改善NACA 0015翼型气动性能的实验   总被引:1,自引:1,他引:0       下载免费PDF全文
谢理科  梁华  赵光银  魏彪  苏志  陈杰  田苗 《推进技术》2020,41(2):294-304
介质阻挡放电(DBD)均匀稳定、易于敷设,是机翼/翼型等离子体流动控制(PFC)中最常用的激励方式。射频介质阻挡放电激励频率高、放电功率大,且能在流场中产生明显的加热,应用潜力大。采用射频电源驱动DBD激励器产生等离子体,分析放电的体积力、热特性和诱导流场特性,开展了射频介质阻挡放电改善NACA 0015翼型气动性能的实验,研究了占空比、调制频率、载波频率和电源功率等参数对流动控制效果的影响规律。结果表明:射频等离子体激励的体积力效应随激励电压的增大而增加;射频等离子体激励产生的热量在诱导的流场中进行传导,加速流场;当来流速度为20m/s,Re=3.36×10~5时,在翼型前缘施加激励,使翼型临界失速迎角推迟1°,最大升力系数增大6.43%,且在过失速迎角下仍具有流动控制效果,使升力下降变缓;调制频率越大,控制效果越好;存在最佳占空比、载波频率和功率,占空比对流场控制效果的影响最显著,最佳占空比、载波频率和功率分别为20%,460kHz和50W。射频等离子体激励以体积力效应、热效应和诱导壁面射流改善失速流场,使得NACA0015翼型气动性能极大改善,流动分离得到有效控制。  相似文献   

8.
等离子体合成射流激励器及其流动控制技术研究进展   总被引:1,自引:0,他引:1  
等离子体合成射流(PSJ)激励器是通过半封闭容腔内电弧放电的温升及压升作用产生高温高速零质量射流的装置,具有射流速度高、边界层穿透能力强、响应速度快、激励频带宽、无活动部件等优势,是一种应用前景广泛的新型主动流动控制激励器。对等离子体合成射流激励器近些年来的研究进展进行了综述,重点综述了激励器在增大控制能力、提高能量效率、拓展环境适应性等方面所进行的优化设计,介绍了激励器研究中所发展的创新手段,并对激励器的能量效率特性和参数影响规律进行了归纳总结。重点综述了等离子体合成射流激励器在横向主流干扰、分离流控制、激波控制、激波/边界层干扰控制等应用领域的研究进展,深入探讨了等离子体合成射流与横向主流、分离泡、激波等典型流场结构的耦合作用机理,分析了等离子体合成射流主动流动控制存在的动量注入效应、冲击波效应、局部加热效应等复杂作用机制,并对未来的研究方向进行了探讨。  相似文献   

9.
为了研究介质阻挡放电的热效应,将介质阻挡放电等离子体激励器(DBDPA)安装在一个小型量热风洞中,采用微秒级脉冲等离子体电源驱动DBDPA产生放电等离子体。分别应用Lissajous图形分析方法和量热学原理获得了DBDPA的放电功率特性和热功率特性。结果表明:①脉冲介质阻挡放等离子体的放电功率、热功率和热效率均随着激励电压峰-峰值和激励频率的升高而逐渐增大;②脉冲介质阻挡放电等离子体的放电功率和热功率与激励电压和激励频率之间均存在幂函数关系,即脉冲式介质阻挡放电等离子的放电功率正比于激励电压峰-峰值的1.75次方,正比于激励频率的1次方,其热功率正比于激励电压峰-峰值的5.0次方,正比于激励频率的1.5次方;③在激励电压和激励频率这两个参数中,优先选择提高激励电压峰-峰值更有利于提高热效率,也可更快地提升介质阻挡放电等离子热功率中气体加热功率的比例。   相似文献   

10.
增升装置是传统构型飞机的重要组成部分,对飞行器气动性能有重要影响。将高效、简便、节能的介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体激励器布置在增升装置附近,通过对流场进行控制来达到提高增升装置气动性能的作用。选取二维翼型GAW-1及其29%襟翼作为研究对象,在分析基础流场的基础上,固定激励器放电频率等参数不变,将单级介质阻挡放电激励器放置在几个不同位置,用数值模拟的方法研究其对翼型总体气动特性的影响。仿真结果表明,主翼上表面后缘处的激励器增升效果最好,增升达12.8%且将失速迎角推迟约2°,主翼下表面后缘的升阻比增加可达15%。  相似文献   

11.
《中国航空学报》2023,36(2):87-99
Ice accretion on aircraft encountering supercooled water droplets in clouds poses great risks to flight performance and safety. With the aim of optimizing the newly developed streamwise plasma heat knife method for anti-icing, a parametric investigation is carried out in this work. The influence of the detailed voltage profile on the heating effects of a Surface Dielectric Barrier Discharge driven by Nanosecond Pulses (NS-SDBD) is investigated, and a comparison of the anti-icing performance among different configurations of streamwise plasma heat knife is made. The results show that columnar high-temperature regions produced by a multi-streamer discharge appear at small pulse rise time, but become diffuse as the pulse rise time increases. An optimal pulse rise time exists to provide a wide range and high value of temperature, which is found to be 150 ns for the setup in the present study. The influence of the pulse fall time is much weaker than that of the rise time. The range and value of the temperature decrease with increasing pulse fall time. A greater pulse width is found to improve the heating effect by increasing the discharge power. When a spanwise electrode is placed connecting the streamwise electrodes of the streamwise plasma heat knife at the airfoil leading edge, the anti-icing performance becomes poorer, whereas good performance is achieved when the spanwise electrode is at the edge of the streamwise electrodes. Based on this, a three-level configuration of the plasma heat knife is proposed, and its anti-icing performance is found to be much better than that of the original configuration.  相似文献   

12.
A 15° swept wing with dielectric barrier discharge plasma actuator is designed.Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.  相似文献   

13.
陈密  房晓龙  朱荻 《航空学报》2019,40(8):422781-422781
航空航天难加工材料直纹面构件的高精度高表面完整性加工已经成为制造领域普遍关注和亟需解决的难题,电解线切割加工在高表面完整性要求加工场合上具有原理性优势。建立脉冲电流电解线切割加工模型,分析了工件厚度变化带来的影响。试验结果表明:随着工件厚度增加,电解液电阻减小,工件两端极间电压减小,加工缝宽变窄;双电层时间常数增大,脉宽时间内充电所能达到的电位降低,有效加工时间变短,平均电流密度较低;脉冲频率大于20 kHz时,最大进给速度随频率增加而快速减小,低于20 kHz时,最大加工速度差别较小。最后,采用脉冲频率20 kHz,以进给速度4 μm/s稳定加工出20 mm厚榫头/榫槽结构,表面粗糙度约为0.449 4 μm,表面质量、加工效率明显高于100 kHz加工效果。  相似文献   

14.
等离子体激励器通过产生的等离子加速气流,可以实现对流动的控制。单级等离子体激励器由于受到等离子体放电的物理限制,其控制作用较小;为了提高等离子体流动控制的效果,关于多级等离子体激励器的研究得到发展。采用图像采集和粒子示踪测速系统(PIV),对传统多级等离子体激励器和多级双极性等离子体激励器的放电现象以及气流加速进行研究,并通过流场速度分布计算等离子体激励器对空气产生的推力和吸力。结果表明:随着电压的升高,传统多级等离子体激励器产生的推力和吸力会逐渐减弱;而多级双极性等离子体激励器产生的推力和吸力均呈逐渐增强的趋势。  相似文献   

15.
This paper provides an overview of the physics and design of single dielectric barrier discharge (SDBD) plasma actuators for enhanced aerodynamics in a variety of applications. The actuators consist of two electrodes, one exposed to the air and the other covered by a dielectric material. The electrodes are supplied with an ac voltage that at high enough levels, causes the air over the covered electrode to ionize. The ionization of the air is a dynamic process within the ac cycle. The ionized air, in the presence of the electric field produced by the electrode geometry, results in a body force vector that acts on the ambient air. The body force is the mechanism for active aerodynamic control. The body force per unit volume of plasma has been derived from first principles and implemented in numerical flow simulations. This utilizes models for the time and space dependence of the air ionization on the input voltage amplitude, frequency, electrode geometry and dielectric properties that have been developed and bench-marked with experiments. The experiments and model suggest approaches that can maximize the performance of the plasma actuators. A sample implementation of an actuator model in a numerical flow simulation consisting of leading-edge separation control on an airfoil along with an experimental benchmark is then presented.  相似文献   

16.
A dielectric barrier discharge, operating at kHz and kV conditions, can generate largely isothermal surface plasma and induce wall-jet-like fluid flow. It can serve as an aerodynamic actuator, and has advantages of no moving parts. In order to better understand the mechanism of the momentum coupling between the plasma and the fluid flow, both computational modeling and experimental information are presented. Furthermore, the impact of such athermal, non-equilibrium plasma discharges on low-speed aerodynamics and heat transfer is discussed. The plasma and fluid species are treated as a two-fluid system exhibiting decades of length and time-scale disparities. For Reynolds numbers of 104–105, the time-scales ratios between those characterizing the discharge physics (convection, diffusion, and reaction/ionization) and the fluid flow mechanisms are separated by several decades, allowing the effect of plasma on the fluid dynamics modeled via a one-way body force treatment. At a phenomenological level, the plasma model can be established using a linearized force distribution to approximate the discharge structure. A high-fidelity approach using a first-principle-based hydrodynamic-plasma model is also reviewed. Numerical techniques such as operating splitting are introduced in order to handle the computational stiffness resulting from the time and length scale variations. The goal is to use time-step sizes in the range of the fluid dynamics level while treating the fast varying ones statistically. The momentum coupling is discussed in the context of discharge chemistry; species transport properties, insulator and electrode materials, and dielectric barrier discharge (DBD) geometry. Parametric studies conducted on the operating variables such as voltage, frequency and geometric arrangements offer substantial insight into the plasma physics, as well as a basis to explore thermal management and flow control applications.  相似文献   

17.
双极性等离子体激励器圆柱绕流控制实验研究   总被引:5,自引:0,他引:5  
在低速风洞中利用多级双极性等离子体激励器控制圆柱绕流的流动分离。实验风速U∞=10m/s,基于圆柱直径的雷诺数Re=2.8×10^4,在实验中将两组三级双极性等离子体激励器布置在圆柱模型肩部,利用粒子图像测速技术测量圆柱的尾流场。实验结果表明,采用定常和非定常激励均能抑制圆柱尾迹区,等离子体激励强度是影响激励器对圆柱绕流控制能力的重要因素;非定常脉冲激励耗电少,对流动控制能力强,效率明显高于定常激励,脉冲激励频率影响等离子体激励器对流动的控制能力。在实验风速为10m/s时,脉冲激励频率与圆柱涡脱落频率一致,流动控制效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号