首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper is concerned with the search for orbits that have potential to require low fuel consumption for station-keeping maneuvers for constellations of satellites. The method used to study this problem is based on the integral over the time of the undesired perturbing forces. This integral measures the change of velocity caused by the perturbation forces acting on the satellite, so mapping orbits that are less perturbed, which generates good candidates for orbits that requires low fuel consumption for station-keeping maneuvers. The integral over the time depends only on the orbit of the spacecraft and the dynamical system considered. The type of engine and the control technique applied to the spacecraft are not considered to search for those orbits. It can be a good strategy to be applied for a first mapping of orbits. For this search, it is analyzed the integral of orbits with different values of the Keplerian elements in order to find the best ones with respect to this criterion. The perturbations considered are the ones caused by the third body, which includes the Sun and the Moon, and the J2 term of the geopotential. The results presented here show numerical simulations to obtain the integral of those perturbing forces for different orbits. The GPS and the Molniya constellations are used as examples for those calculations.  相似文献   

2.
Methods are proposed for constructing the orbits of spacecraft remaining for long periods of time in the vicinity of the L 2 libration point in the Sun-Earth system (so-called halo orbits), and the trajectories of uncontrolled flights from low near-Earth orbits to halo orbits. Halo orbits and flight trajectories are constructed in two stages: A suitable solution to a circular restricted three-body problem is first constructed and then transformed into the solution for a restricted four-body problem in view of the real motions of the Sun, Earth, and Moon. For a halo orbit, its prototype in the first stage is a combination of a periodic Lyapunov solution in the vicinity of the L 2 point and lying in the plane of large-body motion, with the solution for the linear second-order system describing small deviations of the spacecraft from this plane along the periodic solution. The desired orbit is found as the solution to the three-body problem best approximating the prototype in the mean square. The constructed orbit serves as a similar prototype in the second stage. In both stages, the approximating solution is constructed by continuation along a parameter that is the length of the approximation interval. Flight trajectories are constructed in a similar manner. The prototype orbit in the first stage is a combination of a solution lying in the plane of large-body motion and a solution for a linear second-order system describing small deviations of the spacecraft from this plane. The planar solution begins near the Earth and over time tends toward the Lyapunov solution existing in the vicinity of the L 2 point. The initial conditions of both prototypes and the approximating solutions correspond to the spacecraft’s departure from a low near-Earth orbit at a given distance, perigee, and inclination.  相似文献   

3.
The practical tasks related to qualitative investigation of long-term evolution of high-apogee orbits of artificial Earth satellites (AES), for which the main perturbing factors are gravitational perturbations from the Moon and the Sun, are considered. Attention is given to the problem of the ballistic lifetime of similar orbits, and the issues associated with possibilities of the correction of orbits for ensuring the required duration of their ballistic lifetime are considered. The orbit of the SPECTR-R spacecraft launched in July of 2011 is considered as an example.  相似文献   

4.
The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun–Earth weak stability regions and then return to the Earth–Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth–Moon libration orbits by means of these applications.  相似文献   

5.
On the basis of generalization of the results of extensive trajectory calculations for trial charged particles moving in the geomagnetic field the method of calculation of effective vertical cutoff rigidity, taking into account the values of K p -index and local time, is developed. The IGRF and Tsyganenko-89 models are used for the geomagnetic field. A comparison of the results of model simulations with the experimental data on penetration of charged particles into near-Earth space is made, and penetration functions for typical spacecraft orbits are calculated.  相似文献   

6.
The possibility of the spacecraft insertion into the system of operational heliocentric orbits has been analyzed. It has been proposed to use a system of several operational heliocentric orbits. On each orbit, the spacecraft makes one or more revolutions around the Sun. These orbits are characterized by a relatively small perihelion radius and relatively high inclination, which allows one to investigate the polar regions of the Sun. The transition of the spacecraft from one orbit to another has been performed using an unpowered gravity assist maneuver near Venus and does not require the cruise propulsion operation. Each maneuver transfers the spacecraft into the sequence of operational heliocentric orbits. We have analyzed several systems of operational heliocentric orbits into which the spacecraft can be inserted by means of the considered transportation system with electric propulsion (EP). The mass of the spacecraft delivered to these systems of operational orbits has been estimated.  相似文献   

7.
A procedure has been proposed for calculating limited orbits around the L2 libration points of the Sun–Earth system. The motion of a spacecraft in the vicinity of the libration point has been considered a superposition of three components, i.e., decreasing (stable), increasing (unstable), and limited. The proposed procedure makes it possible to correct the state vector of the spacecraft so as to neutralize the unstable component of the motion. Using this procedure, the calculation of orbits around various types of libration points has been carried out and the dependence on the orbit type on the initial conditions has been studied.  相似文献   

8.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   

9.
A method of constructing three-dimensional orbits with a necessary evolution in the system the Sun — (Earth + Moon) is described. The orbit (promising from the viewpoint of solving formulated research problems) of the Millimetron spacecraft is suggested. Feasibility of such an orbit is demonstrated, as well as a possibility to observe with its help the majority of objects on the celestial sphere and to transmit the data to the Earth.  相似文献   

10.
Reduction of flight duration after insertion till docking to the ISS is considered. In the beginning of the human flight era both the USSR and the USA used short mission profiles due to limited life support resources. A rendezvous during these missions was usually achieved in 1–5 revolutions. The short-term rendezvous were made possible by the coordinated launch profiles of both rendezvousing spacecraft, which provided specific relative position of the spacecraft or phase angle conditions. After the beginning of regular flights to the orbital stations these requirements became difficult to fulfill. That is why it was decided to transfer to 1- or 2-day rendezvous profile. The long stay of a crew in a limited habitation volume of the Soyuz-TMA spacecraft before docking to the ISS is one of the most strained parts of the flight and naturally cosmonauts wish to dock to the ISS as soon as possible. As a result of previous studies the short four-burn rendezvous mission profile with docking in a few orbits was developed. It is shown that the current capabilities of the Soyuz-FG launch vehicle and the Soyuz-TMA spacecraft are sufficient to provide for that. The first test of the short rendezvous mission during Progress cargo vehicle flight to the ISS is planned for 2012. Possible contingencies pertinent to this profile are described. In particular, in the majority of the emergency cases there is a possibility of an urgent transfer to the present 2-day rendezvous profile. Thus, the short mission will be very flexible and will not influence the ISS mission plan. Fuel consumption for the nominal and emergency cases is defined by statistical simulation of the rendezvous mission. The qualitative analysis of the short-term and current 2-day rendezvous missions is performed.  相似文献   

11.
The paper describes the reduction of the vehicle autonomous flight duration before docking to the ISS. The Russian Soyuz-TMA spacecraft dock to the ISS two days after launch. Due to the limited volume inside Soyuz-TMA the reduction of time until docking to the ISS is very important, since the long stay of the cosmonauts in the limited volume adds to the strain of the space flight. In the previous papers of the authors it was shown that the existing capabilities of Soyuz-TMA, the ISS and the ground control loop make it possible to transfer to the five-orbit rendezvous profile. However, the analysis of the cosmonauts' schedule on the launch day shows that its duration is at the allowable limit and that is why it is necessary to find a way to further reduce the flight duration of Soyuz-TMA before docking to less than five orbits. In a traditional rendezvous profile, the calculation of rendezvous burns begins only after determination of the actual vehicle insertion orbit. The paper describes an approach in which the first two rendezvous burns are performed as soon as the spacecraft reaches the reference orbit and the values of the burns are calculated prior to the launch based on the pre-flight data for the nominal insertion. This approach decreases the duration of the rendezvous by one orbit. The demonstration flight of a Progress vehicle using the proposed profile was implemented on August 1, 2012 and completely confirmed the correctness of the imbedded principles. The paper considers the possible improvements of the proposed approach and recovery from the contingencies.  相似文献   

12.
A technique of generation of spatial periodic solutions to the restricted circular three-body problem from periodic orbits of the planar problem has been used for the families of orbits around collinear libration points L 1 and L 2. Developing the families obtained at the 1: 1 resonance, we have obtained stable solutions both in the Earth-Moon system and in the Sun-Earth system. Of course, the term “around the libration point” is rather conventional; the obtained orbits become more similar to the orbits around the smaller attracting body. The further development of the family of orbits “around” the libration point L 2 in the Sun-Earth system made it possible to find the orbits satisfying the new, much more rigorous constraints on cooling the spacecraft of the Millimetron project.  相似文献   

13.
In the implementation of the space projects Rosetta and Mars Express, a large-scale series of experiments has been carried out on radio sounding circumsolar plasma by decimeter (S-band) and centimeter (X-band) signals of the Rosetta comet probe (from October 3 to October 31, 2010) and the Mars Express satellite of Mars (from December 25, 2010 to March 27, 2011). It was found that in the phase of ingress the spacecraft behind the Sun, the intensity of the frequency fluctuations increases in accordance with a power function whose argument is the solar offset distance of radio ray path, and when the spacecraft is removed from the Sun (the egress phase), frequency fluctuations are reduced. Periodic strong increases in the fluctuation level, exceeding by a factor of 3–12 the background values of this value determined by the regular radial dependences, are imposed on the regular dependences. It was found that increasing the fluctuations of radio waves alternates with the periodicity m × T or n × T, where m = 1/2, n = 1, аnd T is the synodic period of the Sun’s rotation (T ≈ 27 days). It was shown that the corotating structures associated with the interaction regions of different speed fluxes are formed in the area of solar wind acceleration and at distances of 6–20 solar radii already have a quasi-stationary character.  相似文献   

14.
Optical surveys have identified a class of high area-to-mass ratio (HAMR) objects in the vicinity of the Geostationary Earth Orbit (GEO) ring. The exact origin and nature of these objects are not well known, although their proximity to the GEO belt poses a hazard to active GEO satellites. The prevalent conjecture is that many of these objects may be thermal materials shed from derelict spacecraft in ‘graveyard’ orbits above the GEO ring. Due to their high area-to-mass ratios and unknown attitude dynamics and material characteristics, solar radiation pressure (SRP) perturbs their orbits in ways that makes it difficult to predict their orbital trajectories over periods of time exceeding a week or less. To better understand and track these objects and infer their origins, we have made observations that allow us to determine physical characteristics that will improve the non-conservative force modeling used for orbit determination (OD) and prediction. Information on their temperatures, areas, emissivities, and albedos may be obtained from thermal infrared and visible measurements. Simultaneous observations in the thermal infrared and visible wavelengths may allow disentangling of projected area, albedo, and object emissivity.Further analysis and modeling of observational data on certain of the HAMR objects collected at the AMOS observatory 3.6 m AEOS telescope are presented. The thermal-IR spectra of these geosynchronous orbit objects acquired by the Broadband Array Spectrograph System (BASS) span wavelengths 3 to 13 μm and constitute a unique data set, providing a means of measuring object fluxes in the infrared and visible wavelengths. These, in turn, allow temperatures and emissivity-area products to be calculated, and in some cases provide information on rotation rates. We compare our observational results with the outputs of simple models, in terms of visible and infrared flux and orbital characteristics. The resulting temperatures and rotation rates are used in SRP acceleration models to demonstrate improvements in OD and prediction performance relative to models which assume default ambient temperature and static attitude dynamics. Additionally, we have the capability and plans to measure material properties with the same instrument in the lab as used at the telescope to facilitate direct comparisons.  相似文献   

15.
We consider the problem of injection of a spacecraft into the heliocentric Earth's orbit ahead and/or behind the Earth by 60° and 120° in heliographic longitude. The range of solar and astrophysical problems for which these orbits are necessary is reviewed. The variants of injection into heliocentric orbits work from a low around-Earth orbit with one turn-on of the engine in this orbit and one turn-on at the end of the injection trajectory. In this case, it turns out to be more profitable to put spacecraft into orbit for three or even four revolutions of the Earth about the Sun. The velocities necessary for the start from a low around-Earth orbit, the velocities at the final point of injection, and the fuel mass (relative to the spacecraft mass) necessary for injection are estimated. The problems for which injection to similar orbits is executed, using the low-thrust engine and with a combined regime of injection, are also considered.  相似文献   

16.
Using daily and hourly data on solar plasma parameters at the Ulysses spacecraft orbit and at 1 AU it is demonstrated that there is a simple relationship between plasma temperature and density with the heliospheric magnetic field (HMF). A mathematical expression connecting HMF with plasma temperature and density is suggested. Correlation coefficients and regression equations for measured and calculated magnetic fields are presented for the 1990–2009 period according to Ulysses spacecraft data and for 2003–2010 at 1 AU (OMNI database). The roles played by density, temperature, and high-speed solar wind streams in forming the magnetic-field peaks are demonstrated using hourly data of OMNI2 and Ulysses.  相似文献   

17.
The well-known Lagrangian points that appear in the planar restricted three-body problem are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Earth–Sun system). They are all very good points to locate a space-station, since they require a small amount of ΔV (and fuel), the control to be used, for station-keeping. The triangular points are especially good for this purpose, since they are stable equilibrium points.In this paper, the planar restricted four-body problem applied to the Sun–Earth–Moon–Spacecraft is combined with numerical integration and gradient methods to solve the two-point boundary value problem. This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Earth–Sun system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth.The dynamics given by the restricted four-body problem is used to obtain the trajectory of the spacecraft, but not the position of the equilibrium points. Their position is taken from the restricted three-body model. The goal to use this model is to evaluate the perturbation of the Sun in those important trajectories, in terms of fuel consumption and time of flight. The solutions will also show how to apply the impulses to accomplish the transfers under this force model.The results showed a large collection of transfers, and that there are initial conditions (position of the Sun with respect to the other bodies) where the force of the Sun can be used to reduce the cost of the transfers.  相似文献   

18.
We discuss the results of measurements made with the Planetary Fourier Spectrometer (PFS) onboard the Mars Express spacecraft. The data were obtained in the beginning of the mission and correspond to the end of summer in the southern hemisphere of Mars (L s ~ 340°). Three orbits are considered, two of which passed through volcanoes Olympus and Ascraeus Mons (the height above the surface is about +20 km), while the third orbit intersects lowland Hellas (?7 km). The influence of the relief on the properties of the aerosol observed is demonstrated: clouds of water ice with a visual optical thickness of 0.1–0.5 were observed above volcanoes, while only dust was found during the observations (close in time) along the orbit passing through Hellas in low and middle latitudes. This dust is homogeneously mixed with gas and has a reduced optical thickness of 0.25±0.05 (at v = 1100 cm?1). In addition to orographic clouds, ice clouds were observed in this season in the northern polar region. The clouds seen in the images obtained simultaneously by the mapping spectrometer OMEGA confirm the PFS results. Temperature inversion is discovered in the north polar hood below the level 1 mbar with a temperature maximum at about 0.6 mbar. This inversion is associated with descending movements in the Hadley cell.  相似文献   

19.
An efficient scheme of the use of the Earth’s gravity in interplanetary flights is suggested, which opens up new opportunities for exploration of the solar system. The scheme of the gravitational maneuver allows one to considerably reduce the spacecraft mass consumption for a flight and the time of flight. An algorithm of the gravitational maneuver is suggested that takes into account the restriction on the altitude of a planet flyby. Estimates are made of transport capabilities for delivery of a spacecraft to the orbits of Jupiter, Saturn, and Uranus. The spacecraft is based on a middle-class carrier launcher of the Soyuz type and includes chemical and electric plasma jet engines of the SPD-140 type, which use solar energy.  相似文献   

20.
The new approach to gravitation effect determination in calculating the flux of sporadic micrometeoroids in the near-Earth space is proposed. The technique is based on integration of the equations of motion of sporadic micrometeoroids with accounting for bending their trajectories when particles are approaching the Earth. The technique and results of calculation of the gravitational focusing factor kg for various conditions are presented. The feature of the proposed technique for calculating coefficient kg consists in the fact that this coefficient does not explicitly depend on the values of particles velocity at the last point. The results of investigation of coefficient kg have shown that, for the given initial velocity of micrometeoroids, the values of this coefficient depend on deflection of its direction from the direction to the Earth center. It is shown that for low-altitude orbits the flux density can increase up to 60%. The distribution of probabilities of various directions of particles flying to spacecraft structural elements is found to be non-uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号