首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Le Grand  P. 《Space Science Reviews》2003,108(1-2):225-238
One long-standing difficulty in estimating the large-scale ocean circulation is the inability to observe absolute current velocities. Both conventional hydrographic measurements and altimetric measurements provide observations of currents relative to an unknown velocity at a reference depth in the case of hydrographic data, and relative to mean currents calculated over some averaging period in the case of altimetric data. Space gravity missions together with altimetric observations have the potential to overcome this difficulty by providing absolute estimates of the velocity of surface oceanic currents. The absolute surface velocity estimates will in turn provide the reference level velocities that are necessary to compute absolute velocities at any depth level from hydrographic data. Several studies have been carried out to quantify the improvements expected from ongoing and future space gravity missions. The results of these studies in terms of volume flux estimates (transport of water masses) and heat flux estimates (transport of heat by the ocean) are reviewed in this paper. The studies are based on ocean inverse modeling techniques that derive impact estimates solely from the geoid error budgets of forthcoming space gravity missions. Despite some differences in the assumptions made, the inverse modeling calculations all point to significant improvements in estimates of oceanic fluxes. These improvements, measured in terms of reductions of uncertainties, are expected to be as large as a factor of 2. New developments in autonomous ocean observing systems will complement the developments expected from space gravity missions. The synergies of in situ and satellite observing systems are considered in the conclusion of this paper. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
《中国航空学报》2023,36(5):125-144
Solar sail technology has been proposed and developed for space explorations with advantages of low launch cost, no-propellant consumption, and continuous thrust, which has great potentials in earth polar detection, interstellar explorations and etc. The development of solar sail has made significant progress in structural design, manufacturing, materials, orbit transfer, and stability control in the past few decades, which makes meaningful contributions to astronomy, physics, and aerospace science. Technological breakthroughs of Solar Radiation Pressure (SRP) propulsion and interstellar transfer have been achieved in current solar sail missions. However, there are still many challenges and problems need to be solved. This paper attempts to summarize the research schemes and potential applications of solar sailing in space missions from the viewpoint of key technologies, so as to provide an overall perspective for researchers in this field. Analyses of the key technologies of solar sailing system design are provided. Finally, challenges and prospective development of solar sailing are discussed.  相似文献   

3.
吴健发  王宏伦  黄宇 《航空学报》2020,41(3):623414-623414
通过任务规划技术合理的优化太阳能无人机的飞行轨迹和动力学参数,能够有效提高太阳能无人机的能量利用率,使其胜任许多大范围跨时间跨空间飞行任务。从能量建模、续航评估和能量管理策略3个方面对大跨时空任务背景下太阳能无人机任务规划技术的研究进展进行了综述。在能量建模方面,介绍了当前主流的太阳辐射模型和能量生产基本框架;在续航评估方面,分析了目前的指标设计和应用方法;在能量管理策略方面,从能量综合应用、风力滑翔机制、轨迹优化方法和面向特定任务的应用4个角度,梳理了当前的研究现状。最后,对该领域未来可能的研究方向进行了展望。  相似文献   

4.
After some introductory discussions about morphological concepts and limitations of various measurement techniques, existing low energy plasma data, orginating primarily from the GEOS, Dynamics Explorer, and Prognoz spacecraft, is described and discussed. The plasmasphere measurements are not included (but for some observations of plasmasphere refilling). It is finally concluded that we are very far from a complete picture of the low-energy plasma component in the magnetosphere and that this problem has to be given high priority in planning payloads of future space plasma physics missions.  相似文献   

5.
Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 12C/13C, 16O/18O, 14N/15N, 32S/34S ratios in dust and gases, and discuss their cosmogonic implications. The prospects for future measurements from cometary space missions and remote sensing observations at millimeter and submillimeter wavelengths are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We review observations and theories of radio wave emissions from the outer planets. These include radio emissions from the auroral regions and from the radiation belts, low-frequency electromagnetic emissions, and atmospheric lightning. For each of these emissions, we present in more details our knowledge of the Saturn counterpart, as well as expectations for Cassini. We summarize the capabilities of the radio instrument onboard Cassini, observations performed during the Jupiter flyby, and first (remote) observations of Saturn. Open questions are listed along with the specific observations that may bring responses to them. The coordinated observations (from the ground and from space) that would be valuable to perform in parallel to Cassini measurements are briefly discussed. Finally, we outline future missions and perspectives.  相似文献   

7.
未来空间任务的复杂性不断提高,开发一个低成本的地面综合测试平台环境,通过模拟和仿真以确认、优化和验证空间信息传输的协议体系结构、先进技术和应用服务具有十分重要意义。文章描述了空间信息传输协议测试平台的应用对象和研究目标,提出了总体技术框架和功能组成,以未来月球任务为研究对象,分析了测试平台实验场景及测试方法步骤。  相似文献   

8.
The Kelvin–Helmholtz instability (KHI) is a ubiquitous phenomenon across the Universe, observed from 500 m deep in the oceans on Earth to the Orion molecular cloud. Over the past two decades, several space missions have enabled a leap forward in our understanding of this phenomenon at the Earth’s magnetopause. Key results obtained by these missions are first presented, with a special emphasis on Cluster and THEMIS. In particular, as an ideal instability, the KHI was not expected to produce mass transport. Simulations, later confirmed by spacecraft observations, indicate that plasma transport in Kelvin–Helmholtz (KH) vortices can arise during non-linear stage of its development via secondary process. In addition to plasma transport, spacecraft observations have revealed that KHI can also lead to significant ion heating due to enhanced ion-scale wave activity driven by the KHI. Finally, we describe what are the upcoming observational opportunities in 2018–2020, thanks to a unique constellation of multi-spacecraft missions including: MMS, Cluster, THEMIS, Van Allen Probes and Swarm.  相似文献   

9.
The United States and German Space Agencies (NASA and DARA) are collaborating in plans for SOFIA — The Stratospheric Observatory for Infrared Astronomy. It is a 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 45,000 feet. It will permit routine measurement of infrared radiation absorbed by the atmosphere at lower altitudes, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 20 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace. SOFIA will complement the capabilities of other future space missions, and will enable scientists to make observations which would otherwise be made from space.  相似文献   

10.
Computer requirements for future space missions are developed and three different approaches to multiprocessing computer organizations are presented. These approaches are shown to have considerable advantages over conventional computers for advanced space missions. Reliability requirements also are assessed by a simulation method and shown to be attainable for long-duration missions.  相似文献   

11.
The Solar System includes two planets—Mercury and Mars—significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these “sub-Earths” should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby bright stars. Future space-based microlensing missions should be able to probe the sub-Earth population on much wider orbits. A census of sub-Earths will complete the reconnaissance of the exoplanet mass spectrum and test predictions of planet formation models, including whether low-mass M dwarf stars preferentially host the smallest planets. The properties of sub-Earths may reflect their low gravity, diverse origins, and environment, but they will be elusive: Observations of eclipsing systems by the James Webb Space Telescope may give us our first clues to the properties of these small worlds.  相似文献   

12.
We briefly review some questions of extragalactic astrophysics and cosmology that would most benefit from future missions outside the Earth's atmosphere in the IR and submillimeter. These include the formation and early evolution phases in galaxies and the probably related question of quasar formation; the observation of Active Galactic Nuclei embedded in thick dusty structures (torii) and its impact on the still debated unified model of AGN activity; the observability of radiation processes occurring at very highz through background measurements; the investigation of the large scale structure and velocity field in the distant universe; and studies of the interstellar medium in galaxies. Some more emphasis is given on the galaxy formation problem, because we believe that IR-mm sensitive observations will be crucial to its final solution.  相似文献   

13.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   

14.
Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to be even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Despite the tremendous progress that has been made since the publication of the Venus II book in 1997, many fundamental questions remain concerning Venus’ history, evolution and current geologic and atmospheric processes. The international science community has taken several approaches to prioritizing these questions, either through formal processes like the Planetary Decadal Survey in the United States and the Cosmic Vision in Europe, or informally through science definition teams utilized by Japan, Russia, and India. These questions are left to future investigators to address through a broad range of research approaches that include Earth-based observations, laboratory and modeling studies that are based on existing data, and new space flight missions. Many of the highest priority questions for Venus can be answered with new measurements acquired by orbiting or in situ missions that use current technologies, and several plausible implementation concepts have been studied and proposed for flight. However, observations needed to address some science questions pose substantial technological challenges, for example, long term survival on the surface of Venus and missions that require surface or controlled aerial mobility. Missions enabled by investments in these technologies will open the door to completely new ways of exploring Venus to provide unique insights into Venus’s past and the processes at work today.  相似文献   

16.
Planetary Magnetic Field Measurements: Missions and Instrumentation   总被引:2,自引:0,他引:2  
The nature and diversity of the magnetic properties of the planets have been investigated by a large number of space missions over the past 50 years. It is clear that without the magnetic field measurements that have been carried out in the vicinity of all the planets, the state of their interior and their evolution since their formation would not be understood even though questions remain about how the different planetary dynamos (in six of the eight planets) work. This paper describes the motivation for making magnetic field measurements, the instrumentation that has been used and many of the missions that carried out the pioneering observations. Emphasis is given to the historically important early missions even if the results from these have been in some cases bettered by later missions.  相似文献   

17.
The Solar Maximum Year is a world-wide cooperative project to gain more insight in certain aspects of solar flares. It consists of three sub-programs: The Flare Build-up Study (FBS), the Study of Energy Release from Flares (SERF), and the Study of Travelling Interplanetary Phenomena (STIP). These programs are described. We also describe space observations to be performed during SMY, particularly the Solar Maximum Mission Satellite.Invited talk, presented at 22nd COSPAR Meeting in Bangalore on 7 June, 1979.  相似文献   

18.
New approaches are being studied for real-time interaction, and related supporting processes, with spacecraft and instruments in deep space. Spacecraft are evolving, improving in many ways, and generally becoming more robust. Operations is changing also, and will be more automated in the future. However, there is a challenge. Deep space missions are not all alike. The operations phases of discovery and exploration are an extension of the research that creates the mission; they are the time of obtaining results. This examines the historical role of flight operations and its evolving processes to develop an understanding of the operational methods that will be effective in the future. It takes people, equipment, software, space, and connectivity for operations success. A balance has to be struck between improving technology, gaining knowledge, automation, and realistic expectations. Finally, the recommended methods to gain efficiency in operations are system-wide services and shared resources. These common processes will meet the challenge of varied missions.  相似文献   

19.
《中国航空学报》2022,35(12):200-211
High-area/mass ratio landers driven by Solar Radiation Pressure (SRP) have potential applications for future asteroid landing missions. This paper develops a new convex optimization-based method for planning trajectories driven by SRP. A Minimum Landing Error (MLE) control problem is formulated to enable planning SRP-controlled trajectories with different flight times. It is transformed into Second Order Cone Programming (SOCP) successfully by a series of different convexification technologies. A trust region constraint and a modified MLE objective function are used to guarantee the convergence performance of the optimization algorithm. Thereafter, the SRP-driven trajectory optimal control problem is converted equivalently into a sequence of convex optimal control problems that can be solved effectively. A set of numerical simulation results has verified the effectiveness and feasibility of the proposed optimization method.  相似文献   

20.
While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern (Switzerland) in March 2014 and 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号