首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton and electron heating of a flaring atmosphere is compared in a kinetic approach for the particles ejected from a non-neutral reconnecting current sheet (RCS) located above the top of reconnected flaring loops in a two-ribbon flare. Two kinds of high-energy particles are considered: particles accelerated by a super-Dreicer electric field and those ejected from the reconnection region as neutral outflows, or separatrix jets. The beam electrons are assumed to deposit their energy in Coulomb collisions and Ohmic heating of the ambient plasma particles by the electric field induced by the precipitating beams. The protons are assumed to deposit their energy in generation of kinetic Alfvén waves (KAWs), which, in turn, dissipate due to Cherenkov resonant scattering on the ambient plasma electrons. The beam electrons are found to provide a fast (within a few tenth of a second) heating of the atmosphere that is well spread in depth from the corona to the lower chromosphere. The protons are shown to precipitate to the lower atmosphere much slower (up to few seconds for beam and up to 10–20 s for slow jets). Slow jet protons provide heating of the two compact regions: the first located at the top of a flaring loop just below the RCS, and the second one appearing at the transition region (TR) and upper chromosphere; fast beam protons deposit their energy in the TR and chromosphere only.  相似文献   

2.
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed.  相似文献   

3.
Gradual rise and fall type solar radio flares recorded at 37 GHz (8 mm wavelength) are analysed and compared with simultaneous soft and hard X-ray events. Emission measures and plasma temperatures were calculated from the GOES soft X-ray data, and optically thin thermal bremsstrahlung flux at 37 GHz was calculated assuming the same emitting volumes. The main emission mechanism behind the millimeter wave radio flares was determined to be thermal bremsstrahlung although many of the flares showed impulsive, non-thermal features. The radio flares were compared with simultaneous BATSE hard X-ray events, but significant temporal correlation was not found. It is suggested that there might be two different types of gradual radio flares, connected to gradual or more impulsive hard X-ray events. Another explanation for the observed two types would be different viewing angles to the emitting regions.  相似文献   

4.
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow.  相似文献   

5.
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.  相似文献   

6.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   

7.
The Bent Crystal Spectrometer on the NASA Solar Maximum Mission satellite provides high spectral and temporal resolution observations of the Fe Kα lines. We have analysed spectra from almost 50 solar flares that occurred during 1980. These data strongly support fluorescent excitation of photospheric iron by photons of E > 7.11 keV emitted by the hot coronal plasma produced during the flare. After comparison of the data with a model, we discuss the observed Kα line widths, estimates of the size of the emitting region, the height of the coronal source and the photospheric iron abundance.  相似文献   

8.
We review the recent advances in the field of energy transfer and dissipation in solar flares. New observations and theoretical results have been obtained during the SMY and discussed in several workshops. Important new results have been provided by imaging hard X-ray and radio observations, high resolution spectra in the soft X-ray range, polarization measurements and combined optical, gamma- and X-ray data. We summarize results on the following topics: a) interpretation of hard X-ray bursts; b) heating and cooling of X-ray flare plasmas; c) chromospheric heating and evaporation; d) white-light flares. An overall picture of the importance of transfer processes is given, together with prospects for development of future research topics.  相似文献   

9.
Recent advances in the study of energy release in Flares are reviewed. Progress has been made in modelling coronal X-ray emission and the chromospheric response to energy imput. These advances are based on theoretical studies and on the comparison of complementary data obtained from spacecraft and ground-based observatories. We first review the modelling of the coronal flare derived from radio, X-ray and XUV observations. Then we summarize results on the chromospheric response to various energy imput. Observations of X-ray continuum intensity and polarization, transition zone lines and chromospheric lines do not show evidence of particle trapping by a turbulent front. Although they might be in agreement with trapping and partial precipitation. White light flares appear to result from energy deposited above the photosphere. They are probably due to electron bombardment. The implication of these results on the primary energy release process are discussed and prospects for new research are presented.  相似文献   

10.
11.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   

12.
The physics of the impulsive phase of solar flares is discussed in relation to high resolution microwave, hard X-ray and ultraviolet observations. High spatial resolution observations of the structure of microwave flaring loops and their interpretation in terms of arcades of loops as the sites of primary energy release are presented. Theoretical interpretation of the confinement of microwave producing energetic electrons in the coronal part of loops is discussed. High temporal and spatial resolution measurements in hard X-rays, as well as observations of the spectral evolution of the hard X-ray emission are presented. Observations of the relative locations of microwave and hard X-ray emitting regions are presented and their significance with respect to the energy release site and electron acceleration is discussed. The relative timing of the peaks of impulsive hard X-ray and microwave burst is discussed. The significance of ultraviolet measurements in obtaining the density of flaring regions is discussed. Possible diagnostics of impulsive phase onsets from cm-λ polarization data are presented, and the role of the emergence of new flux and of the current sheet formed between closed loops in producing impulsive energy release at centimeter wavelengths are analyzed. Decimeter and meter wave manifestations of preflash phase and millisecond pulsations at centimeter and decimeter wavelengths and the relevant physical processes involved are discussed.  相似文献   

13.
An analysis of D-region electron density height profile variations, induced by four isolated solar X-ray flares during period from September 2005 to December 2006, based on the amplitude and the phase delay perturbation of 22.1 kHz signal trace from Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E), coded GQD, was carried out. Solar flare data were taken from NOAA GOES12 satellite one-minute listings. For VLF data acquisition and recordings at the Institute of Physics, Belgrade, Serbia, the AbsPAL system was used. Starting from LWPCv21 code (Ferguson, 1998), the variations of the Earth-ionosphere waveguide characteristic parameters, sharpness and reflection height, were estimated during the flare conditions. It was found that solar flare events affected the VLF wave propagation in the Earth-ionosphere waveguide by changing the lower ionosphere electron density height profile, in a different way, for different solar flare events.  相似文献   

14.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

15.
A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the filament, resulting in and associated with magnetic reconnection and the formation of a current sheet. The interaction of this current sheet with the original current filament, the background magnetic field and the boundary layer of the photosphere determine the further electrodynamic development of the flare. The model predicts the energy release, the time of maximum, the height of the energy source and other quantities reasonably well.  相似文献   

16.
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares.  相似文献   

17.
First order Fermi shock acceleration of electrons, protons and alpha particles is compared to observations of energetic particle events. For each event, a unique shock compression ratio produces spectra in good agreement with observation. The simple model predicts that the acceleration time to a given energy will be approximately equal for electrons and protons and, for reasonable solar parameters, can be less than 1 second to ~ 100 MeV.  相似文献   

18.
We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.  相似文献   

19.
Neutrons with energies exceeding 1 GeV are emitted in the course of solar flares. Suitable dedicated neutron spectrometers with directional characteristics are necessary for a systematic spectroscopy of solar neutrons. We report here a study of instruments based on the detection of proton recoils from hydrogenous media, with double scattering in order to provide directional information, and also a novel scheme based on the detection of radiation from the neutron magnetic dipole moment, permitting also directional detection of neutrons. Specific designs and detection systems are discussed.  相似文献   

20.
X-ray spectrometer RESIK has observed spectra in the four wavelength bands from 3.3 Å to 6.1 Å. This spectral range contains many emission lines of H- and He-like ions for Si, S, Ar and K. These lines are formed in plasma of coronal temperatures (T > 3 MK). Analysis of their intensities allows studying differential emission measure distributions (DEM) in temperature range roughly between 3 MK and 30 MK. The aim of present study was to check whether any relationship exists between the character of DEM distribution, the event phase and the X-ray flare class. To do this we have calculated and analyzed the DEM distributions for a set of flares belonging to different GOES classes from the range B5.6–X1. The DEM distributions have been calculated using “Withbroe–Sylwester” multiplicative, maximum likelihood iterative algorithm. As the input data we have used absolute fluxes observed by RESIK in several spectral bands (lines + continuum). Respective emission functions have been calculated using the CHIANTI v. 5.2 atomic data package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号