首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper explores the concept of using electrostatic forces for deployment of gossamer space structures. The Electrostatically Inflated Membrane Structure (EIMS) uses two conducting membranes that are interconnected through membrane ribs. An absolute electrostatic charge is applied to the structure through active charge emission. This causes repulsion between layers of lightweight membranes that inflates the EIMS system and tensions the membranes. Assuming positive tensions, the EIMS system is modeled as a rigid system. Typical orbital perturbations are considered such as solar radiation pressure, differential gravity, and atmospheric drag which may compress the structure leading to shape destabilization. Restricting the analysis in this paper to flat membranes, the minimum potentials required to exactly compensate for the worst case scenario of differential solar radiation pressure at geostationary altitudes are estimated to be on the order of hundreds of volts. In low Earth orbit, voltage magnitudes of several kilovolts are required to reach an inflation pressure to offset the normal compressive drag pressure.  相似文献   

2.
长期在轨运行卫星的轨道维持技术   总被引:1,自引:0,他引:1  
谌颖  何英姿  韩冬 《航天控制》2006,24(3):35-38
本文研究近地轨道卫星长期在轨运行的轨道维持问题。轨道维持的任务是将卫星的星下点轨迹保持在设计的参考轨迹附近。近地轨道卫星所受的摄动力包括地球引力摄动、日月摄动、大气阻力摄动和光压摄动等,而影响卫星轨道星下点漂移的主要因素是大气阻力摄动。本文给出了一种新的卫星轨道维持策略,数学仿真表明了其有效性。  相似文献   

3.
高层大气模型对空间站轨道漂移和寿命的影响分析   总被引:2,自引:0,他引:2  
本文以轨道摄动分析方法一阶理论为基础,其中大气阻力摄动采用数值积分方法,给出一种可利用各种大气模型进行轨道摄动分析的计算方法,并利用三种高层大气模型(CIRA—72,CIRA—86和DTM)和三个太阳活动水平(F10.7=100,150和200)分析比较了大气阻力振动对高度为400km的空间站轨道漂移和寿命的影响,以及估算修正轨道漂移所需的能量。给出的定量分析结果将为空间站或航天飞行器的轨道设计和能量估算提供依据。  相似文献   

4.
“CBERS” (China Brazil Earth Resources Satellite) was put into orbit on 14th of October 1999. The atmospheric drag is the major non-gravitational perturbation affecting the control of ground track. As accuracy requirements increase, greater reliance is placed on the empirical techniques. During the initial operational phase of CBERS, the solar activity is almost at its peak. This phenomenon has provided an opportunity to carry out an evaluation of the atmospheric density models. The study puts emphasis on two commonly used atmospheric density models viz. Jacchia and Mass Spectrometer Incoherent Scatter (MSIS). The analysis is based on the decay histories of CBERS to choose the accurate density model. Density models used for orbit propagation are usually derived empirically from actual flight data. Brief synopsis of some of the models is presented along with some of the density tables and orbit solutions of CBERS. Typical plots of density are presented. The study indicated that the drag estimation is relatively precise using MSIS based models. Among them MSIS-90 density model is observed to be a better compromise in terms of accuracy, flexibility and computational aspects. The analysis would be useful in mitigating the impact of solar activity on orbit prediction and maintenance.  相似文献   

5.
基于精确星光大气折射观测模型的轨道摄动研究   总被引:1,自引:0,他引:1  
胡静  杨博 《航天控制》2007,25(4):46-50
基于星光折射间接敏感地平自主导航方法,改进了现有的大气密度模型和固定高度(25km)的观测模型,建立了自适应连续高度(20km~50km)的星光折射观测模型,并在此观测模型的基础上深入分析研究了影响导航精度的各种轨道摄动力,包括地球形状各阶摄动力、不同高度的大气阻力摄动力、太阳光辐射压力等.提出一种精简的大气模式--静止变标高球面大气,解决了由于高层大气密度的求解复杂,使大气阻力摄动模型不精确的问题,由此取得了较好的导航定位精度.利用UKF和EKF两种不同非线性算法,对考虑各种摄动力后的导航定位精度进行全面的计算机仿真实验,并就仿真结果进行了误差分析,同时研究了各种有关参数对导航精度的影响.  相似文献   

6.
分布式卫星轨道构形的大气摄动分析及修正方法   总被引:5,自引:0,他引:5  
黄卫东  张育林 《宇航学报》2005,26(5):649-652
在低轨道运行的分布式卫星受大气摄动的影响,其轨道构形很快遭到破坏,环绕卫星的相对运动轨迹中心不断发生漂移。本研究的目的在于建立一种降低大气摄动对分布式卫星轨道构形影响的补偿方法,以使分布式卫星的轨道构形能够更好地自然维持。研究基于考虑高度变化和太阳周日变化的大气密度模型,得出分布式卫星不同初始相位环绕卫星的长半轴摄动方程。并提出一种补偿大气摄动影响的长半轴修正方法。仿真结果显示,采用此大气摄动补偿方法能够在给定时间内大大降低大气摄动的影响,从而显著提高分布式卫星轨道构形的自然维持能力。  相似文献   

7.
张军徽  方瑞颖  武娜  佟安  刘应华 《宇航学报》2020,41(10):1295-1304
本文研究条带式太阳帆在近地轨道运行进出地球阴影时的热致结构动力学响应,建立了在太阳热辐射和光压共同作用下的太阳帆结构动力学方程,采用分布传递函数法,给出了条带式太阳帆热致结构稳态振动幅频响应的计算方法。算例结果表明:热辐射冲击是引起近地轨道太阳帆结构动力学响应的主要原因,光压引起的结构响应可忽略不计;增加桅杆壁厚不能有效抑制太阳帆的热致结构动态响应;增大阻尼,减小结构的热膨胀系数能够明显减小太阳帆热致结构响应的振幅;热致结构动态响应是设计大尺寸近地轨道太阳帆必须解决的问题。本文提出的方法可为太阳帆结构设计、姿态和轨道控制提供有力的分析工具。  相似文献   

8.
针对地磁扰动期间大气密度变化造成的低轨目标较大的轨道预报误差,提出一种根据POES卫星观测的极光能量注入数据改进短期轨道预报的方法。分析表明CHAMP卫星的沿迹大气密度及轨道衰减与极光能量注入具有较好的相关性。通过线性回归方法,建立轨道半长轴衰减及阻力调制系数的修正公式,并使用修正后的阻力调制系数取代两行元(TLE)中的该系数带入SGP4模型进行位置预报。该方案考虑了外推过程中地磁扰动引起的大气密度响应,能更准确地反映外推过程中大气阻力对轨道的影响。将其应用到2008年CHAMP卫星和国际空间站的轨道预报中,结果表明,半长轴和位置的预报误差可分别降低50%和30%左右。进一步对不同年份、不同轨道高度的目标进行了预报误差修正的分析,验证了该方法的普适性。  相似文献   

9.
太阳同步回归轨道的长期演变与控制   总被引:3,自引:1,他引:3  
近地轨道的遥感卫星绝大部分都采用太阳同步回归轨道。这类轨道由于受到大气阻力的影响,半长轴将不断地衰变并导致地面轨迹的东漂,为保持回归特性需周期性地对半长轴进行调整。另一类长期变化是太阳引力引起的倾角变化,这是太阳同步轨道特有的。倾角长期的变化又进一步导致回归轨道的标称半长轴和降交点地方时的相应变化。文章给出了这些变化的解析模型以及轨道控制的策略。  相似文献   

10.
The relative importance of certain general relativistic effects is enhanced by solar radiation pressure (SRP). The observation and study of the trajectories of a solar sail could potentially provide tests of various effects of general relativity. In particular, we study Keplerian and non-Keplerian orbits near the sun as well as escape trajectories for a solar sail, for which general relativistic effects and the solar radiation pressure are considered simultaneously. In contrast with the conventional solar mission, a solar sail allows for non-Keplerian orbits, for which the orbital plane lies above the sun. It is predicted that there is an analog of the Lense–Thirring effect for non-Keplerian orbits. Also the SRP increases the amount of precession per orbit due to the Lense–Thirring effect for polar heliocentric orbits. A solar sail would also enhance the relative importance of effects associated with a possible net charge on the sun and during many rotations this effect may be measurable.  相似文献   

11.
A developed method of determination of orbital parameters allows one to estimate, along with orbit elements, some additional parameters that characterize solar radiation pressure and perturbing accelerations due to unloadings of reactiion wheels. A parameterized model of perturbing action of solar radiation pressure on the spacecraft motion is described (this model takes into account the shape, reflecting properties of surfaces, and spacecraft attitude). Some orbit determination results are presented obtained by the joint processing of radio measurements of slant range and Doppler, laser range measurements used to calibrate the radio measurements, optical observations of right ascension and declination, and telemetry data on spacecraft thrusters’ firings during an unloading of reaction wheels.  相似文献   

12.
张宇  段建锋  陈明  孔静  段成林 《宇航学报》2016,37(9):1056-1062
以近地航天器轨道动力学为基础,建立变阻力系数大气摄动模型,设计了求解变阻力系数的算法。然后利用天宫一号飞行器的测轨数据进行计算,分析了空间实验室飞行高度的轨道特性,其中包括:大气模式密度误差、变阻力系数与空间环境关系、定轨残差和星历误差。在空间环境平静和磁暴的条件下,制定了多种求解变阻力系数的策略,解决了空间实验室长弧段定轨精度受限的问题,并在空间环境平静条件下实现了优于10米的定轨精度,在磁暴条件下实现了优于20米的定轨精度。  相似文献   

13.
While solar electromagnetic radiation can be used to propel a solar sail, it is shown that the Poynting–Robertson effect related to the absorbed portion of the radiation leads to a drag force in the transversal direction. The Poynting–Robertson effect is considered for escape trajectories, Heliocentric bound orbits and non-Keplerian bound orbits. For escape trajectories, this drag force diminishes the cruising velocity, which has a cumulative effect on the Heliocentric distance. For Heliocentric and non-Keplerian bound orbits, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the Sun. Since the Poynting–Robertson effect is due to the absorbed portion of the electromagnetic radiation, degradation of a solar sail implies that this effect becomes enhanced during a mission.  相似文献   

14.
A mathematical model for the solar radiation forces and moments acting on a square plate (platform) in orbit is obtained by considering the plate mode shapes as combinations of free-free beam shape functions. The moment expressions for a plate of arbitrary reflectivity coefficient are obtained as a function of the solar incidence angle. It is seen that only the first three flexible modes of the plate generate a first order net moment about the center of mass, and that the solar radiation pressure does not influence the flexible modes of the plate for small amplitude vibrations. The solar radiation disturbance model is then included in the dynamic model of a square plate nominally oriented along the local vertical and having the major surface of the plate normal to the orbital plane. The roll angle of the plate is seen to increase steadily due to the solar radiation pressure whereas the pitch and yaw motions oscillate with an amplitude of approximately 0.2° for a 100 m square thin aluminum plate in synchronous orbit. To control the shape and orientation of the plate two point actuators are assumed—one whose force axis is normal to the plane of the plate, the second with a force axis in the plane of the plate. The control law and the feedback gain values are obtained based on linear quadratic Gaussian methods. Transient responses and control requirements are simulated for local vertical and horizontal orientations.  相似文献   

15.
This paper introduces a novel Lyapunov-based adaptive control strategy for spacecraft maneuvers using atmospheric differential drag. The control forces required for rendezvous maneuvers at low Earth orbits can be generated by varying the aerodynamic drag affecting each spacecraft. This can be accomplished, for example, by rotating dedicated sets of drag panels. Thus, the relative spacecraft motion can be controlled without using any propellant since the motion of the panels can be powered by solar energy. A novel adaptive Lyapunov controller is designed, and a critical value for the relative drag acceleration that ensures Lyapunov stability is found. The critical value is used to adapt the Lyapunov controller, enhancing its performance. The method is validated using simulations. The results show that the Adaptive Lyapunov technique outperforms previous control strategies for differential drag based spacecraft maneuvering.  相似文献   

16.
The efficiency of using the light pressure of solar radiation for increasing the semimajor axis of the orbit of an Earth Satellite carrying a solar sail is estimated. The orbit is nearly circular and has an altitude of about 900 km. The satellite is in the mode of single-axis solar orientation: it rotates at an angular velocity of 1 deg/s around the axis of symmetry, which traces the direction to the Sun. This mode is maintained by the solar sail, which serves in this case as a solar stabilizer. The following method of increasing the semimajor axis of the orbit (which is equivalent to increasing the total energy of the satellite's orbital motion) is considered. On those sections of the orbit, where the angle between the light pressure force acting upon the sail and the vector of geocentric velocity of the satellite does not exceed a specified limit, the sail is functioning as a solar stabilizer. On those sections of the orbit, where the above-indicated angle exceeds this limit, the sail is furled by way of turning the edges of the petals towards the Sun. Such a control increases the semimajor axis by more than 150 km for three months of flight. In this case, the accuracy of solar orientation decreases insignificantly.  相似文献   

17.
杜耀珂  何益康 《上海航天》2012,29(3):18-22,72
针对干涉合成孔径雷达(InSAR)编队卫星的特点,分析了地球形状、大气阻力、第三体引力和太阳光压等空间摄动力对卫星轨道的影响,并仿真讨论其对编队构型的影响。结果表明:地球形状摄动和大气阻力摄动是引起InSAR编队构型变化的主要摄动因素,在这些摄动力的作用下,编队构型的变化主要是沿航迹向的累积变化和编队椭圆的空间指向变化两种,并给出了编队构型随时间的变化量。研究为编队保持控制提供了参考。  相似文献   

18.
We consider a freely guided photonic blade (FGPB) which is a centrifugally stretched sheet of photonic sail membrane that can be tilted by changing the centre of mass or by other means. The FGPB can be installed at the tip of each main tether of an electric solar wind sail (E-sail) so that one can actively manage the tethers to avoid their mutual collisions and to modify the spin rate of the sail if needed. This enables a more scalable and modular E-sail than the baseline approach where auxiliary tethers are used for collision avoidance. For purely photonic sail applications one can remove the tethers and increase the size of the blades to obtain a novel variant of the heliogyro that can have a significantly higher packing density than the traditional heliogyro. For satellite deorbiting in low Earth orbit (LEO) conditions, analogous designs exist where the E-sail effect is replaced by the negative polarity plasma brake effect and the photonic pressure by atmospheric drag. We conclude that the FGPB appears to be an enabling technique for diverse applications. We also outline a way of demonstrating it on ground and in LEO at low cost.  相似文献   

19.
The stationkeeping of symmetric Walker constellations is analyzed by considering the perturbations arising from a high order and degree Earth gravity field and the solar radiation pressure. These perturbations act differently on each group of spacecraft flying in a given orbital plane, causing a differential drift effect that would disrupt the initial symmetry of the constellation. The analysis is based on the consideration of a fictitious set of rotating reference frames that move with the spacecraft in the mean sense, but drift at a rate equal to the average drift rate experienced by all the vehicles over an extended period. The frames are also allowed to experience the J2-precession such that each vehicle is allowed to drift in 3D relative to its frame. A two-impulse rendezvous maneuver is then constructed to bring each vehicle to the center of its frame as soon as a given tolerance deadband is about to be violated. This paper illustrates the computations associated with the stationkeeping of a generic Walker constellation by maneuvering each leading spacecraft within an orbit plane and calculating the associated velocity changes required for controlling the in-plane motions in an exacting sense, at least for the first series of maneuvers. The analysis can be easily extended to lower flying constellations, which experience additional perturbations due to drag.  相似文献   

20.
《Acta Astronautica》2013,82(2):456-465
The out-of-plane amplitude along quasi-periodic trajectories in the Earth–Moon system is highly sensitive to perturbations in position and/or velocity as underscored recently by the ARTEMIS spacecraft. Controlling the evolution of the out-of-plane amplitude is non-trivial, but can be critical to satisfying mission requirements. The sensitivity of the out-of-plane amplitude evolution to perturbations due to lunar eccentricity, solar gravity, and solar radiation pressure is explored and a strategy for designing low-cost deterministic maneuvers to control the amplitude history is also examined. The method is sufficiently general and is applied to the L1 quasi-periodic orbit that serves as a baseline for the ARTEMIS P2 trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号