首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
曹鹏飞  刘勇  马传令  陈明 《宇航学报》2022,43(3):301-309
针对嫦娥五号任务上升段末期火箭二级发动机可能出现的提前关机故障造成入轨半长轴偏差较大和中途修正速度增量超限问题,提出了多圈调相地月转移轨道应急控制策略.首先,分析了不同入轨半长轴偏差、中途修正时刻与中途修正速度增量消耗之间的关系;其次,针对半长轴偏差较大问题,基于微分改正算法与B平面参数,设计了解析窗口搜索与多圈调相地...  相似文献   

2.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for decades. Exterior and interior transfers, based on the transit through the regions where the collinear libration points are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is concerned with a geometrical approach for low-energy Earth-to-Moon mission analysis, based on isomorphic mapping. The isomorphic mapping of trajectories allows a visual, intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Two types of Earth-to-Moon missions are considered. The first mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a periodic orbit around the Moon. The second mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a capture (non-periodic) orbit around the Moon. In both cases three velocity impulses are needed to perform the transfer: the first at an unknown initial point along the low Earth orbit, the second at injection on the stable manifold, the third at injection in the final (periodic or capture) orbit. The final goal is in finding the optimization parameters, which are represented by the locations, directions, and magnitudes of the velocity impulses such that the overall delta-v of the transfer is minimized. This work proves how isomorphic mapping (in two distinct forms) can be profitably employed to optimize such transfers, by determining in a geometrical fashion the desired optimization parameters that minimize the delta-v budget required to perform the transfer.  相似文献   

3.
The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun–Earth weak stability regions and then return to the Earth–Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth–Moon libration orbits by means of these applications.  相似文献   

4.
曹喜滨  张相宇  王峰 《宇航学报》2013,34(8):1047-1054
针对日-地Halo轨道到日-火Halo轨道的小推力轨道转移问题,给出一种基于不变流形理论和Gauss伪谱法的优化设计方法。首先,在日心惯性坐标系中建立小推力轨道优化模型,并基于不变流形理论给出轨道转移中流形出口和入口的选择原则,应用该原则在日-地系统中选择流形出口,在日-火系统中选择流形入口,并将其作为轨道转移的初末状态;然后基于Gauss伪谱法将最优控制问题离散化为非线性规划(NLP)问题,并采用基于逆多项式的形状算法给出了NLP初值的计算方法;最后对该轨道转移问题进行了数学仿真。仿真结果表明:Gauss伪谱法可有效用于小推力日-火Halo轨道转移的优化,且采用逆多项式形状算法得到的初值具有初始误差小,使得NLP收敛速度快的特点。  相似文献   

5.
基于序优化理论的晕轨道转移轨道设计   总被引:1,自引:1,他引:0  
利用晕轨道的稳定流形可以设计从地球到晕轨道的转移轨道。但由于小幅度晕轨道的稳 定流形与地球停泊轨道无法相交,因此需采用两脉冲转移。微分修正法是求解两脉冲转移常 用的优化方法,虽然收敛速度快,但很难获取全局最优解,而且收敛半径小,如果初始猜想 与最优解相差很远,该方法可能会不收敛。将序优化理论与微分修正法相结合,利用序优化 思想缩小搜索空间,得到足够好的初始猜想,然后利用微分修正法快速收敛到满足终端精度 要求的解。仿真结果表明该方法有很好的收敛性,且计算量小。
  相似文献   

6.
地月低能转移轨道设计方法研究   总被引:1,自引:0,他引:1  
何巍  徐世杰 《宇航学报》2006,27(5):965-969
研究地月低能转移轨道的设计方法。这种低能转移轨道利用了弱稳定边界理论,通过太阳的引力摄动,使得探测器能够不经过减速就被月球俘获。与经典的霍曼转移相比,低能转移轨道呵节省约140m/s的速度脉冲。由于设计是基于叫体问题模型进行的,问题具有很强的非线性特性,寻找满足约束条件的转移轨道变得非常困难。常用的两点边值问题的解法在这里都失效。本文在研究地月低能转移轨道特忡的基础上,对一般地月转移轨道搜索的变步长爬山法进行改进,用来设计地月低能转移轨道。仿真结果验证了该方法的有效性。  相似文献   

7.
This paper deals with energetically optimal multi-impulse transfers of a spacecraft in the central Newtonian gravitational field near a planet. The transfer from a point on initial orbit to the final orbit with the given angular momentum and energy constants is considered. The transfer time is bounded above.With the distance from spacecraft to planet limited and the time free, such parameters of given orbits are chosen that the 3-impulse apsidal transfer Tr is optimal with an intermediate impulse at the maximum distance. On the basis of necessary optimality conditions an algorithm is developed to numerically determine the desired optimal transfer trajectory Tt under time constraint, the apsidal trajectory Tr being taken as initial approach. From the geometry and energy viewpoints, both trajectories Tt and Tr are close to each other. The trajectory Tt is also 3-impulsive, all impulses on it are nonapsidal. The distance from the planet is larger and the sum of impulses is less for this trajectory than for the initial trajectory Tr with the same transfer time.The simplified solution of the problem is constructed producing good approximation to the exact numerical optimization results. The solution asymptotics is found when the transfer time tends to infinity.  相似文献   

8.
以无动力飞行器末制导问题为研究对象,用正则摄动理论对其纵向弹道方程进行处理。在零阶方程中考虑重力和气动力的主导部分,在一阶方程中考虑重力和气动力的剩余部分,进而获得了弹道方程的解析解,仿真证明了该解析解具有较高的计算精度和计算效率。基于弹道解析解所获得的脱靶量,提出了正则摄动制导方法,仿真证明了该方法具有最优性。  相似文献   

9.
地-月低能耗转移轨道中途修正问题研究   总被引:2,自引:0,他引:2  
何巍  徐世杰 《航天控制》2007,25(5):22-27
采用地-月低能耗转移轨道的探测器从地球停泊轨道转移到极月轨道一般需要3~4个月时间,这类转移轨道对入轨精度有较高的要求。本文对地月转移轨道中途修正问题进行了研究。文中结合地-月低能耗转移轨道的特点,给出一种分段式多目标多次中途修正方案。利用显式制导结合牛顿迭代,分别以地球和月球作为中心天体求解兰伯特问题,在假设探测器各种轨道误差的基础上进行了蒙特卡罗仿真。采用该方法一般需要3~5次中途修正能够满足月球探测器环月轨道入轨精度要求,整个转移过程燃料消耗小于传统地月转移轨道。文中给出的仿真结果验证了该方案的可行性。  相似文献   

10.
This paper considers minimax problems of optimal control arising in the study of aeroassisted orbital transfer. The maneuver considered involves the coplanar transfer from a high planetary orbit to a low planetary orbit. An example is the HEO-to-LEO transfer of a spacecraft, where HEO denotes high Earth orbit and LEO denotes low Earth orbit. In particular, HEO can be GEO, a geosynchronous Earth orbit.The basic idea is to employ the hybrid combination of propulsive maneuvers in space and aerodynamic maneuvers in the sensible atmosphere. Hence, this type of flight is also called synergetic space flight. With reference to the atmospheric part of the maneuver, trajectory control is achieved by means of lift modulation. The presence of upper and lower bounds on the lift coefficient is considered.The following minimax problems of optimal control are investigated: (i) minimize the peak heating rate, problem P1; and (ii) minimize the peak dynamic pressure, problem P2. It is shown that problems P1 and P2 are approximately equivalent to the following minimax problem of optimal control: (iii) minimize the peak altitude drop occurring in the atmospheric portion of the trajectory, problem P3.Problems P1–P3 are Chebyshev problems of optimal control, which can be converted into Bolza problems by suitable transformations. However, the need for these transformations can be bypassed if one reformulates problem P3 as a two-subarc problem of optimal control, in which the first subarc connects the initial point and the point where the path inclination is zero, and the second subarc connects the point where the path inclination is zero and the final point: (iv) minimize the altitude drop achieved at the point of junction between the first subarc and the second subarc, problem P4. Note that problem P4 is a Bolza problem of optimal control.Numerical solutions for problems P1–P4 are obtained by means of the sequential gradient-restoration algorithm for optimal control problems. Numerical examples are presented, and their engineering implications are discussed. In particular, it is shown that, from an engineering point of view, it is desirable to solve problem P3 or P4, rather than problems P1 and P2.  相似文献   

11.
This paper presents a fixed-time glideslope guidance algorithm that is capable of guiding the spacecraft approaching a target vehicle on a quasi-periodic halo orbit in real Earth–Moon system. To guarantee the flight time is fixed, a novel strategy for designing the parameters of the algorithm is given. Based on the numerical solution of the linearized relative dynamics of the Restricted Three-Body Problem (expressed in inertial coordinates with a time-variant nature), the proposed algorithm breaks down the whole rendezvous trajectory into several arcs. For each arc, a two-impulse transfer is employed to obtain the velocity increment (delta-v) at the joint between arcs. Here we respect the fact that instantaneous delta-v cannot be implemented by any real engine, since the thrust magnitude is always finite. To diminish its effect on the control, a thrust duration as well as a thrust direction are translated from the delta-v in the context of a constant thrust engine (the most robust type in real applications). Furthermore, the ignition and cutoff delays of the thruster are considered as well. With this high-fidelity thrust model, the relative state is then propagated to the next arc by numerical integration using a complete Solar System model. In the end, final corrective control is applied to insure the rendezvous velocity accuracy. To fully validate the proposed guidance algorithm, Monte Carlo simulation is done by incorporating the navigational error and the thrust direction error. Results show that our algorithm can effectively maintain control over the time-fixed rendezvous transfer, with satisfactory final position and velocity accuracies for the near-range guided phase.  相似文献   

12.
The feasible rendezvous, flyby and sample return mission scenario to different spectral-type asteroids for the 2015–2025 are investigated. The emphasis is put on the potential target selection and the design of preliminary interplanetary transfer trajectory in this paper. First, according to different scientific motivations, some potential targets with different spectral-type and physical property are selected. Then, some optimal rendezvous and sample return opportunities for different spectral-type asteroids are presented by using pork-chop plots method and Sequential Quadratic-Programming (SQP) algorithm. In order to reduce the launch energy and total velocity increments for sample return mission, the Earth swingby strategy is used. In addition, the feasible trajectory profiles of flyby and rendezvous with two different spectral-type asteroids in one mission are discussed. A hybrid optimization method combing the Differential Evolution (DE) algorithm and SQP algorithm is introduced as a trajectory design method for the mission. Finally, some important parameters of transfer trajectory are analyzed, which would have a direct impact on the design of spacecraft subsystem, such as communication, power and thermal control subsystem.  相似文献   

13.
A high order optimal control strategy is proposed in this work, based on the use of differential algebraic techniques. In the frame of orbital mechanics, differential algebra allows to represent, by high order Taylor polynomials, the dependency of the spacecraft state on initial conditions and environmental parameters. The resulting polynomials can be manipulated to obtain the high order expansion of the solution of two-point boundary value problems. Since the optimal control problem can be reduced to a two-point boundary value problem, differential algebra is used to compute the high order expansion of the solution of the optimal control problem about a reference trajectory. Whenever perturbations in the nominal conditions occur, new optimal control laws for perturbed initial and final states are obtained by the mere evaluation of polynomials. The performances of the method are assessed on lunar landing, rendezvous maneuvers, and a low-thrust Earth–Mars transfer.  相似文献   

14.
刘磊  刘勇  陈明  谢剑锋  马传令 《宇航学报》2022,43(3):293-300
中国嫦娥五号探测器成功实现月球采样返回任务,为最大限度利用任务资源,研究了利用嫦娥五号轨道器的平动点拓展任务轨道方案,设计了平动点轨道及其转移轨道.首先,给出了任务轨道设计的轨道动力学模型,包括圆型限制性三体问题模型和精确力模型.其次,基于嫦娥二号和嫦娥5T1平动点拓展任务设计经验,介绍了平动点轨道直接转移与入轨等轨道...  相似文献   

15.
A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust in interplanetary space. The aim of this paper is to collect the available experimental data, and the simulation results, to develop a simplified mathematical model that describes the propulsive acceleration of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum time, deep space mission scenario. In particular, optimal and locally optimal steering laws are derived using an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal Earth–Venus (circle-to-circle) interplanetary transfer, and a locally optimal Solar System escape trajectory. For example, assuming a characteristic acceleration of 1 mm/s2, an optimal Earth–Venus transfer may be completed within about 380 days.  相似文献   

16.
《Acta Astronautica》2007,60(8-9):631-648
This paper investigates the problem of continuous-thrust orbital transfer using orbital elements feedback from a nonlinear control standpoint, utilizing concepts of controllability, feedback stabilizability and their interaction. Gauss's variational equations (GVEs) are used to model the state-space dynamics of motion under a central gravitational field. First, the notion of accessibility is reviewed. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived which asymptotically steers a spacecraft form an initial elliptic orbit to any given elliptic orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proven, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft onto a parabolic escape trajectory.  相似文献   

17.
大气层外诱饵释放研究   总被引:1,自引:0,他引:1  
郦苏丹  任萱 《宇航学报》2001,22(2):100-105
本文针对战术弹道导弹释放诱饵的问题,寻求分析艉饵运动的简化方法,利用弹道约束条件的限制,对诱饵相对弹头的运动学方程进行化简,可以获得近似析解。然后通过具体实例。说明解析解的精确性,并利用解析解来简化诱饵释放后的分布分析。  相似文献   

18.
《Acta Astronautica》2003,52(2-6):281-287
Genesis is the fifth mission selected as part of NASA's Discovery Program. The objective of Genesis is to collect solar wind samples for a period of approximately 2 years while in a halo orbit about the Sun–Earth colinear libration point, L1, located between the Sun and Earth. At the end of this period, the spacecraft follows a free-return trajectory with the samples delivered to a specific recovery point on the Earth for subsequent analysis. This type of sample return has never been attempted before and presents a formidable challenge, particularly with regard to planning and execution of propulsive maneuvers. Moreover, since the original inception, additional challenges have arisen as a result of emerging spacecraft design concerns and operational constraints. This paper will describe how these challenges have been met to date in the context of the better-faster-cheaper paradigm. [This paper addresses an earlier mission design, as of May 2000.]  相似文献   

19.
用于对地观测定位的编队飞行卫星群轨道构形设计   总被引:3,自引:2,他引:3  
赵军  肖业伦 《宇航学报》2003,24(6):563-568
编队飞行卫星群是一组小卫星,它们具有短的相对距离、相等的轨道半长轴和微小差别的其它轨道要素,它们形成相互伴随运动,并且具有一定的构形。提出将编队飞行卫星群的轨道设计技术应用于对地观测定位卫星系统中。根据设想的要求,针对由四颗伴随卫星围绕基准卫星(或一个虚拟的中心)飞行的轨道设计案例,初步分析了编队飞行卫星群的构形保持,地球引力和大气阻力的摄动影响等问题。  相似文献   

20.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号