首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owen  Tobias  Gautier  Daniel 《Space Science Reviews》2002,104(1-4):347-376
This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Wolf  Aron A. 《Space Science Reviews》2002,104(1-4):101-128
The Cassini mission to Saturn employs a Saturn orbiter and a Titan probe to conduct an intensive investigation of the Saturnian system. The orbiter flies a series of orbits, incorporating flybys of the Saturnian satellites, called the ‘satellite tour.’ During the tour, the gravitational fields of the satellites (mainly Titan) are used to modify and control the orbit, targeting from one satellite flyby to the next. The tour trajectory must also be designed to maximize opportunities for a diverse set of science observations, subject to mission-imposed constraints. Tour design studies have been conducted for Cassini over a period of several years to identify trades and strategies for achieving these sometimes conflicting goals. Concepts, strategies, and techniques previously developed for the Galileo mission to Jupiter have been modified, and new ones have been developed, to meet the requirements of the Cassini mission. A sample tour is presented illustrating the application of tour design strategies developed for Cassini. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Clausen  K.C.  Hassan  H.  Verdant  M.  Couzin  P.  Huttin  G.  Brisson  M.  Sollazzo  C.  Lebreton  J.-P. 《Space Science Reviews》2002,104(1-4):155-189
Space Science Reviews - The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter...  相似文献   

4.
5.
The international Cassini/Huygens mission consists of the Cassini Saturn Orbiter spacecraft and the Huygens Titan Probe that is targeted for entry into the atmosphere of Saturn's largest moon, Titan. From launch on October 15, 1997 to arrival at Saturn in July 2004, Cassini/Huygens will travel over three billion kilometers. Once in orbit about Saturn, Huygens is released from the orbiter and enters Titan's atmosphere. The Probe descends by parachute and measures the properties of the atmosphere. If the landing is gentle, the properties of the surface will be measured too. Then the orbiter commences a four-year tour of the Saturnian system with 45 flybys of Titan and multiple encounters with the icy moons. The rings, the magnetosphere and Saturn itself are all studied as well as the interactions among them. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Bird  M.K.  Dutta-Roy  R.  Heyl  M.  Allison  M.  Asmar  S.W.  Folkner  W.M.  Preston  R.A.  Atkinson  D.H.  Edenhofer  P.  Plettemeier  D.  Wohlmuth  R.  Iess  L.  Tyler  G.L. 《Space Science Reviews》2002,104(1-4):613-640
A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s−1 from the start of mission at an altitude of ∼160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The Huygens probe arrived at Saturn's moon, Titan, January 14,2005, unveiling a world that is radically different from any other in the solar system. The data obtained, complemented by continuing observations from the Cassini spacecraft, show methane lakes, river channels and drainage basins, sand dunes, cryovolcanos and sierras. This has led to an enormous scientific interest in a follow-up mission to Titan, using a robotic lighter-than-air vehicle (or aerobot). Aerobots have modest power requirements, can fly missions with extended durations, and have very long distance traverse capabilities. They can execute regional surveys, transport and deploy scientific instruments and in-situ laboratory facilities over vast distances, and also provide surface sampling at strategic science sites. This describes our progress in the development of the autonomy technologies that will be required for exploration of Titan. We provide an overview of the autonomy architecture and some of its key components. We also show results obtained from autonomous flight tests conducted in the Mojave Desert.  相似文献   

8.
The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products.  相似文献   

9.
Communication system and operation for lunar probes under lunarsurface   总被引:1,自引:0,他引:1  
In the Japanese LUNAR-A mission, penetrators will be deployed to the Moon for global seismic measurement. The unique communication system between the subsurface probes under the lunar surface and the lunar orbiter is described. Radiowave propagation through a crater which is formed at the penetration is investigated by means of scaled measurements in a simulating environment. Acquisition and tracking sequence is optimized within limited power capacity of the probe to maximize contact time between the probe and the spacecraft  相似文献   

10.
In the last 25 years, the explorations of the Voyager and Galileo missions have resulted in an entirely new view of the icy worlds orbiting the giant outer planets. These objects show a huge diversity in their characteristics, resulting from their formation histories, internal processes and interactions with their space environments. This paper will review the current state of knowledge about the icy satellites and discuss the exciting prospects for the upcoming Cassini/Huygens mission as it begins a new era of exploration of the Saturn satellite system.  相似文献   

11.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

12.
Raulin  François  Owen  Tobias 《Space Science Reviews》2002,104(1-4):377-394
Exobiology is not only the study of the origin, distribution and evolution of life in the universe, but also of structures — including at the molecular level, and processes — including organic chemical transformations — related to life. In that respect, with its dense nitrogen atmosphere, which includes a noticeable fraction of methane, and the many organic compounds which are present in the gas and aerosols phases, Titan appears to be a planetary object of prime interest for exobiology in the Solar system, allowing the study of chemical organic evolution in a planetary environment over a long time scale. We describe here some aspects of this extraterrestrial organic chemistry which involves many physical and chemical couplings in the different parts of what can be called ‘Titan's geofluid’ (gas phase, aerosol phases and surface solid and maybe liquid phases). The three complementary approaches which can be followed to study such chemistry of exobiological interest are considered. Those are experimental simulations in the laboratory, chemical and photochemical modeling and of course observation, using both remote sensing and in situ measurements, which is an essential approach. The Cassini-Huygens mission, that offers a unique opportunity to study in detail the many aspects of Titan's organic chemistry, is discussed and the many expected exobiological returns from the different instruments of the Cassini orbiter and the Huygens probe are considered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Lockheed Martin Astronautics has developed the Multifunctional Structure (MFS) concept as a new system for spacecraft design that eliminates chassis, cables, connectors and folds the electronics into the walls of the spacecraft. Concurrent engineering will be essential to integrate the electronic, structure, and thermal design. Design methodologies are in work to manage all power, grounding and shielding concerns. The MFS approach offers significant savings in mass and volume and supports the “faster-better-cheaper” philosophy in new spacecraft programs. The technology will be demonstrated as an experiment on the New Millenium Program Deep Space 1 (DS 1) mission  相似文献   

14.
Cassini radio science investigations will be conducted both during the cruise (gravitational wave and conjunction experiments) and the Saturnian tour of the mission (atmospheric and ionospheric occultations, ring occultations, determinations of masses and gravity fields). New technologies in the construction of the instrument, which consists of a portion on-board the spacecraft and another portion on the ground, including the use of the Ka-band signal in addition to that of the S- and X-bands, open opportunities for important discoveries in each of the above scientific areas, due to increased accuracy, resolution, sensitivity, and dynamic range.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

15.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   

16.
The dual technique magnetometer system onboard the Cassini orbiter is described. This instrument consists of vector helium and fluxgate magnetometers with the capability to operate the helium device in a scalar mode. This special mode is used near the planet in order to determine with very high accuracy the interior field of the planet. The orbital mission will lead to a detailed understanding of the Saturn/Titan system including measurements of the planetary magnetosphere, and the interactions of Saturn with the solar wind, of Titan with its environments, and of the icy satellites within the magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

17.
Electromagnetic induction is a powerful technique to study the electrical conductivity of the interior of the Earth and other solar system bodies. Information about the electrical conductivity structure can provide strong constraints on the associated internal composition of planetary bodies. Here we give a review of the basic principles of the electromagnetic induction technique and discuss its application to various bodies of our solar system. We also show that the plasma environment, in which the bodies are embedded, generates in addition to the induced magnetic fields competing plasma magnetic fields. These fields need to be treated appropriately to reliably interpret magnetic field measurements in the vicinity of solar system bodies. Induction measurements are particularly important in the search for liquid water outside of Earth. Magnetic field measurements by the Galileo spacecraft provide strong evidence for a subsurface ocean on Europa and Callisto. The induction technique will provide additional important constraints on the possible subsurface water, when used on future Europa and Ganymede orbiters. It can also be applied to probe Enceladus and Titan with Cassini and future spacecraft.  相似文献   

18.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   

19.
Zarnecki  J.C.  Leese  M.R.  Garry  J.R.C.  Ghafoor  N.  Hathi  B. 《Space Science Reviews》2002,104(1-4):593-611
The design and performance of the Surface Science Package (SSP) on the Huygens probe are discussed. This instrument consists of nine separate sensors that are designed to measure a wide range of physical properties of Titan's lower atmosphere, surface, and sub-surface. By measuring a number of physical properties of the surface it is expected that the SSP will be able to constrain the inferred composition and structure of the moon's near-surface environment. Although the SSP is primarily designed to sense properties of the surface, some of its sensors will also make measurements of the atmosphere along the probe's entry path and will complement the data gathered by other experiments on the Huygens probe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Observations from the ground and four fly-by spacecraft have provided initial reconnaissance of Jupiter's atmosphere. The Pioneer and Voyager data have raised new questions and underlined old ones about the basic state of the atmosphere and the processes determining the atmosphere's behavior. This paper discusses the main atmospheric science objectives which will be addressed by the Galileo (Orbiter and Probe) mission, organizing the discussion according to the required measurements of chemical composition, thermal structure, clouds, radiation budget, dynamics, upper atmosphere, and satellite atmospheres. Progress on the key questions will contribute not only to our knowledge of Jupiter's atmosphere but to a general understanding of atmospheric processes which will be valuable for helping us to understand the atmosphere and climate of the Earth.Realization of the atmospheric science objectives of the Galileo mission depends upon: (a) coordinated measurements from the entry probe and the orbiter; (b) global observations; and (c) observations over the range of time-scales needed to characterize the basic dynamical processes.The Atmospheres Working Group also includes: M. D. Allison, M. J. S. Belton, R. W. Boese, R. W. Carlson, C. R. Chapman, T. Encrenaz, V. R. Eshleman, P. J. Gierasch, C. W. Hord, H. T. Howard, L. J. Lanzerotti, H. B. Niemann, G. S. Orton, T. Owen, C. B. Pilcher, J. B. Pollack, B. Ragent, W. B. Rossow, A. Seiff, A. I. Stewart, P. H. Stone, F. W. Taylor, G. L. Tyler, U. von Zahn, and R. A. West.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号