首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
二次流喷口形状对激波矢量控制喷管推力矢量特性影响   总被引:1,自引:1,他引:0  
基于CFD数值模拟技术,考虑变比热比及温度对黏度的影响,针对二次流喷口主要几何参数(二次喷射角度及喷口无量纲展向长度)在不同喷管落压比、二次流压比工况下对激波矢量控制喷管三维流动特性及推力矢量特性进行分析.研究表明:喷射角度增加,二次流喷射前主分离线前移,激波角度增加,在较小的二次流压比下随着喷射角度增加,推力矢量角增大,二次流压比为1.0和1.2时,存在最佳的喷射角度使得推力矢量角最大;喷口无量纲展向长度小于1.0时,喷口前分离涡演变为马蹄涡,并在喷口下游诱导尾涡,二次流压比大于0.6时随喷口无量纲展向长度增大,推力矢量角度增加.   相似文献   

2.
圆孔喷嘴形成气动喉部的定常数值研究   总被引:1,自引:1,他引:0  
对固体火箭发动机上由圆孔喷嘴喷入二次流所形成的气动喉部进行了三维数值模拟.考察了圆孔喷嘴形成气动喉部的典型三维流动特征和喷嘴流量特性.研究了不同喷嘴面积比、喷嘴个数、喷射角度、喷嘴构型及主要喷管参数对气动喉部调节喉部面积能力的影响.结果表明在相同的喷嘴面积比下,增加喷嘴个数、采用逆向喷射或选用收缩喷嘴构型都能显著提高气...  相似文献   

3.
高航速时喷水推进器进流导管背部流动发生分离,加剧了喷泵的进流畸变,导致推进性能下降。本文提出在进流管上布置射流旋涡发生器(VGJ)抑制进流管的流动分离,并通过数值模拟分析了射流孔位置、射流角度、射流流量等射流参数对控制效果的影响。经参数优选后,布置在背部流动分离点前的VGJ、射流角度10°、射流流量是出流流量的2.3%时,进流管出流的不均匀度系数、旋流度、总压畸变指数分别降低35.18%,60.62%,46.42%,总压恢复系数提高了18.07%。VGJ的流动控制作用明显,工况适应性较好,为喷水推进器采用主动流动控制提升推进性能提供理论依据。  相似文献   

4.
无阻流门叶栅式反推力装置数值研究   总被引:1,自引:0,他引:1  
借助CFD技术对无阻流门叶栅式反推力装置开展了数值研究工作。反推力装置内部流线分布揭示了二次流喷口下游产生的旋涡结构缩减外涵通道正向流通面积、迫使外涵流体由叶栅通道流出产生反推力的流动特征。在叶栅通道结构尺寸一定的情况下,反推力性能由二次流喷射位置、喷射流量、喷射角度共同决定。随着喷射流量的增加,反推力性能提高,且存在一个临界二次流流量;当喷射角度增加,反推力性能反而下降,二次流逆喷产生的效果要优于垂直喷射方式。在二次流流量和角度一定的状况下,喷射位置对旋涡结构和大小没有影响,对外涵通道的堵塞效果却不同,喷射位置倾向于叶栅通道中间位置为佳。  相似文献   

5.
S形进气道内的流动分离和二次流造成进气道出口压力损失和气流畸变较为严重,严重影响发动机的工作性能。为改善其流场特性,采用交流介质阻挡放电(Alternating current dielectric barrier discharge,AC-DBD)等离子体激励器主动控制进气道内的流场。在来流风速为10m/s,雷诺数ReD为1.35×105的工况下,探究了控制位置、布局形式对控制效果的作用规律,从流向和出口截面流场及压力分布出发,探究了主动控制的机理。结果表明,AC-DBD等离子体激励器能够提高壁面静压恢复系数,抑制流动分离并改善出口压力畸变。激励器控制位置在分离点附近最佳,且以诱导气流与来流平行的布局形式最优。在本实验范围内,出口静压系数提高了8.94%,出口稳态畸变指数降低了4.58%。其控制机理是DBD等离子体产生的诱导气流直接加速边界层运动,提高边界层抵抗逆压梯度的能力,从而抑制流动分离。同时,抑制二次流运动,降低压力畸变。  相似文献   

6.
激波诱导控制推力矢量喷管实验及数值计算   总被引:2,自引:0,他引:2  
采用实验方法,通过在二元收敛-扩张喷管扩张段引入二次流喷射,开展了激波诱导控制的流体推力矢量技术研究.实验过程通过喷管上、下壁面压力测量及出口射流纹影观测,研究了主流压力、二次流喷射压力以及二次流喷嘴几何(缝或孔)对推力矢量喷管性能的影响.同时,结合数值计算方法,对各实验工况下的喷管流场进行数值模拟,获得了实验手段难以得到的流场数据和性能,对实验结果进行了辅助分析.初步研究结果表明:在给定的实验条件下,主流压力越高,喷管推力矢量角越小,同时推力系数越大;二次流压力越高,喷管推力矢量角越大,同时推力系数减小;同孔喷射相比,采用喷缝几何下的上壁面激波诱导分离点更趋于向上游移动,分离点后压升显著,射流穿透能力强,对主流的扰动强烈.   相似文献   

7.
针对传统大面积比液体火箭发动机喷管在低空过膨胀状态下易产生流动分离的问题,采用特征线法,基于最大推力喷管,对其扩张段后半部分型面进行了控制压力设计,以保证新生成的大面积比喷管(低空满流喷管)壁面压力不小于分离临界压力。而后通过仿真手段对设计方法进行了校验,并对低空满流喷管的性能进行了评估。结果表明:基于最大推力喷管型面的控制压力设计方法能够实现预定的设计目标,生成的型面不仅保证了喷管在海平面条件下处于满流状态,还使得喷管对燃烧室压力脉动具备了一定的抵抗能力。当燃烧室压力为8.5MPa、燃气比热比为1.144时,相较于将要产生分离的面积比为40的最大推力喷管,低空满流喷管能够将面积比增加至60,从而提高真空比冲约5.24s。而相比于面积比为60的最大推力喷管,等面积比的低空满流喷管真空比冲损失约为1.57s。  相似文献   

8.
等离子体控制翼型流动分离实验   总被引:1,自引:1,他引:0  
为了提高等离子体的流动控制能力,在常规大气环境,来流风速分别为20m/s、30m/s、40m/s条件下进行了介质阻挡放电抑制NACA0015翼型流动分离实验研究。结果表明:等离子体能有效的抑制分离,实现增升减阻,但随着来流风速增加,有效控制的起始和终止攻角均变大,攻角区域却逐渐变小;可以通过在翼型分离点附近布置等离子体激励器,在允许的范围内尽量提高输入功率,使控制效果达到最佳。  相似文献   

9.
李成成  李芳  杨斌  王莹 《航空学报》2021,42(7):124547-124547
为研究等离子体激励器对喷管分离流动的抑制作用,运用了模拟等离子体激励作用效果的唯象学模型,数值模拟研究了交流介质阻挡放电等离子体和电弧放电等离子体对喷管分离流动的抑制效果,并探究了电弧放电等离子体不同放电热功率密度、不同放电位置对抑制效果的影响。结果表明:电弧放电等离子体在抑制喷管分离流动方面有更好的效果。当电弧放电等离子体激励器作用于激波与边界层相互作用区的上游时,对分离流动的抑制效果最好;当电弧放电热功率密度较小时,其产生的诱导射流速度很小且不易对分离区的流线产生影响;当电弧放电热功率密度为8×1010 W/m3时,喷管的分离回流区完全消失。  相似文献   

10.
影响喷管流动分离的因素   总被引:1,自引:0,他引:1  
应用 Beam- Warming近似因式分解方法差分求解薄层 N- S方程 ,对某型发动机在多种工况下的分离流场进行计算。结果表明 ,燃烧室总压与环境压强的比值控制分离点位置 ;对于相同的喷管扩张段型面 ,喷管面积比对分离位置的影响小 ;扩张段较长的喷管分离点面积比较小  相似文献   

11.
流动参数对合成射流控制叶栅流动分离的影响   总被引:1,自引:1,他引:0  
采用大涡模拟方法、结构化网格建立了低压高负荷透平Pak B叶栅的非稳态数值分析模型,研究了不同流动参数对合成射流控制叶栅流动分离的影响.控制前随着雷诺数的减小和气流攻角的增大,叶栅流动分离区域变大,在气流攻角为5°下发生分离未在尾缘前再附的情况.合成射流控制后,不同流动参数下的流动分离都得到了有效的控制,并且在射流偏角为30°时,合成射流控制效果最好.合成射流使叶栅吸力面的流动分离位置推迟,再附位置前移,分离泡尺寸减小,叶栅吸力面的逆压梯度段缩短,吸力面边界层表面的剪切层在向下游迁移的过程中,没有发生充分的抬升,避免了大尺度涡旋的形成,并且很快地黏附于壁面,进而有效地控制了流动分离.   相似文献   

12.
龚东升  顾蕴松  周宇航  史楠星 《航空学报》2020,41(10):123609-123609
流体推力矢量喷管型面固定、活动部件少、结构重量轻,能够为高机动飞行器提供有效的飞行控制手段,但无源流体推力矢量喷管热喷流的偏转控制规律尚未完全掌握。为了推进无源流体推力矢量技术的实用化,本文设计研制了适用于微型涡喷发动机的耐高温喷管模型,对该喷管在微型涡喷发动机热喷流状态下的控制规律进行研究。利用非接触光学显示和测量手段——红外热成像拍摄和粒子图像测速(PIV)技术对主射流流动特性进行研究,获得流动矢量角随二次流控制阀门闭合度变化的控制规律;利用六分量盒式天平测力实验研究无源流体推力矢量喷管的力学特性,获得推力矢量角随二次流控制阀门闭合度变化的控制规律。研究结果表明:该构型喷管在微型涡喷发动机热喷流下主射流连续可控偏转,最大流动矢量角为-12.3°/12.3°,最大推力矢量角为-12.9°/12.8°,控制规律接近线性,不存在主射流偏转突跳问题。  相似文献   

13.
流体注入的轴对称矢量喷管三维流场计算   总被引:8,自引:1,他引:8       下载免费PDF全文
采用Roe通量差分分裂格式对基于流体注入控制的轴对称矢量喷管内流场进行了数值模拟。流体注入的位置分别为前孔和后孔,注气压强比为0.75~2.0,注气流量比为2.5%~10.0%,矢量角变化范围为2.8°~7.8°。计算结果表明:随着注气流量和注气压强增加,流体注入所产生的喷管矢量角相应增加;注气位置对喷管矢量角影响较大,注气位置靠近喷管尾沿(后孔注气)比注气位置靠近喷管喉部(前孔注气)所产生的矢量角明显增大。  相似文献   

14.
塞锥气膜冷却对二元塞式喷管红外特征的影响   总被引:2,自引:1,他引:1  
周兵  吉洪湖 《航空动力学报》2016,31(12):2895-2903
为了研究二元塞式喷管塞锥壁面多斜孔气膜冷却对喷管红外特征的影响,设计了带冷却结构的喷管试验模型,测量了吹风比从0增加到1时的塞锥壁面温度、喷管出口截面处喷流温度以及喷管红外辐射强度.结果表明:随着吹风比的增加,气膜冷却效率逐渐提高,最大达到0.68;喷管出口截面在中心区域喷流的温度逐渐降低,最大降幅为14%;喷管红外辐射强度逐渐降低,在0°方位角上最大降低52.8%,在90°方位角上最大降低13%.  相似文献   

15.
抛物线喷管型面参数对流动分离影响的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究抛物线喷管型面的3个参数——初始膨胀圆弧半径、入口角和出口角的变化对喷管流动分离过程的影响规律,模拟了不同参数组合下的抛物线喷管流场参数,获得了喷管流动位置、分离模态随集气室压强增加的变化过程.结果表明:这3个参数能够影响发动机起动过程中喷管流场的发展过程.在一定范围内分离模态转换喷管压比(NPR)与初始膨胀圆弧半径呈正相关;通过合理设定入口角和出口角,可以推迟和缩短受限激波分离过程,为解决彭冠侧向载荷问题提供了可能的方向.   相似文献   

16.
激波矢量控制喷管矢量角随落压比(NPR)的增大而下降的现象已被许多研究所证实.对NPR影响矢量角机理及基于多缝腔体和多缝辅助注气方法的分离区控制研究,目标是寻求大NPR条件下矢量性能提高的方法.研究表明:NPR影响矢量角的机理主要由于次流下游近壁面分离区由小NPR时的开放型变为大NPR时的封闭型,从而导致由于壁面压差力产生的矢量力减小所致.多缝辅助注气方法可以有效控制分离区在大NPR时保持开放,注气压力为环境压力时可以在不从系统额外引气的条件下提高矢量性能.   相似文献   

17.
结合塞式喷管的结构特点,选用流体二次喷射的方法,在应用迎风格式求解N-S方程的基础上,对固体塞式喷管发动机的推力矢量控制进行了初步研究。考察了工作压比、流体二次喷射的角度和流量对固体塞式喷管的高度特性以及流体二次喷射产生的侧向力的影响。结果表明,流体二次喷射的推力矢量控制方法可以增加塞式喷管的轴向力;流体二次喷射产生的侧向力与二次喷射的流量和角度成正变关系;塞式喷管轴向力的增加随着二次流流量的增加而增加,但是二次流对轴向力的增加与二次流喷射的角度成反变关系。  相似文献   

18.
双喉道推力矢量喷管的内流特性研究   总被引:15,自引:1,他引:14       下载免费PDF全文
汪明生  杨平 《推进技术》2008,29(5):566-572
为了研究双喉道推力矢量喷管(DTN)在非推力矢量和推力矢量情况下的内流特性,基于数值模拟的方法,计算分析了不同几何参数和气动参数对DTN的影响。结果表明,DTN在非推力矢量时,仅在落压比(ZNPR)为3~4之间才具有较高的内流性能(推力系数达0.97,流量系数为0.94),当落压比增加时,推力系数迅速下降。在推力矢量时,DTN可以获得很大的推力矢量效率(当落压比为4,引射量为3%时达到4),且推力系数也较高(0.94以上),其综合性能优于单喉道偏移和激波操纵式矢量喷管。二次流量、落压比、凹腔扩张角和收敛角、引射角度都对推力矢量状态下的DTN内流性能有着不同的影响。为了实现DTN在推力矢量和非推力矢量下都有较好的内流综合性能,所建议的设计参数为:落压比为3~4,引射量为3%,凹腔扩张角为10°左右,收敛角在20°~30°,引射角度为30°逆流引射角(β=30°)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号