首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Properties of the heliospheric interface, a complex product of an interaction between charged and neutral particles and magnetic fields in the heliosphere and surrounding Circumheliospheric Medium, are far from being fully understood. Recent Voyager spacecraft encounters with the termination shock and their observations in the heliosheath revealed multiple energetic particle populations and noticeable spatial asymmetries not accounted for by the classic theories. Some of the challenges still facing space physicists include the origin of anomalous cosmic rays, particle acceleration downstream of the termination shock, the role of interstellar magnetic fields in producing the global asymmetry of the interface, the influence of charge exchange and interstellar neutral atoms on heliospheric plasma flows, and the signatures of solar magnetic cycle in the heliosheath. These and other outstanding issues are reviewed in this joint report of working groups 4 and 6.  相似文献   

2.
The interaction of the solar wind with the local interstellar medium is characterized by the self-consistent coupling of solar wind plasma, both upstream and downstream of the heliospheric termination shock, the interstellar plasma, and the neutral atom component of interstellar and solar wind origin. The complex coupling results in the creation of new plasma components (pickup ions), turbulence, and anomalous cosmic rays, and new populations of neutral atoms and their coupling can lead to energetic neutral atoms that can be detected at 1 AU. In this review, we discuss the interaction and coupling of global sized structures (the heliospheric boundary regions) and kinetic physics (the distributions that are responsible for the creation of energetic neutral atoms) based on models that have been developed by the University of Alabama in Huntsville group.  相似文献   

3.
4.
The “classic” anomalous cosmic ray (ACR) component originates as interstellar neutral atoms that drift into the heliosphere, become ionized and picked up by the solar wind, and carried to the outer heliosphere where the pickup ions are accelerated to hundreds of MeV, presumably at the solar wind termination shock. These interstellar ACRs are predominantly singly charged, although higher charge states are present and become dominant above ~350 MeV. Their isotopic composition is like that of the solar system and unlike that of the source of galactic cosmic rays. A comparison of their energy spectra with the estimated flux of pickup ions flowing into the termination shock reveals a mass-dependent acceleration efficiency that favors heavier ions. There is also a heliospheric ACR component as evidenced by “minor” ACR ions, such as Na, Mg, S, and Si that appear to be singly-ionized ions from a source likely in the outer heliosphere.  相似文献   

5.
This chapter covers the theory of physical processes in the outer heliosphere that are particularly important for the IBEX Mission, excluding global magnetohydrodynamic/Boltzmann modeling of the entire heliosphere. Topics addressed include the structure and parameters of the solar wind termination shock, the transmission of ions through the termination shock including possible reflections at the shock electrostatic potential, the acceleration and transport of suprathermal ions and anomalous cosmic rays at the termination shock and in the heliosheath, charge-exchange interactions in the outer heliosphere including mass and momentum loading of the solar wind, the transport of interstellar pickup ions, and the production and anticipated intensities of energetic neutral atoms (ENAs) in the heliosphere.  相似文献   

6.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   

7.
The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.  相似文献   

8.
We explore the sensitivity of the fluxes of heliospheric energetic neutral atoms (ENA) at 1 AU to the ionization state of the local interstellar cloud (LIC). The solar wind plasma is compressed and heated in the termination shock transition. The shocked solar plasma is convected toward the heliospheric tail in the heliosheath, the region between the termination shock and the heliopause. The ENAs are produced in charge exchange of the plasma protons and background neutral gas and can be readily detected at 1 AU. The expected ENA fluxes depend on the shocked plasma density, temperature, and velocity in the heliosheath. The size and structure of the heliospheric interface region depend on the parameters of the interstellar medium. ENA fluxes would thus reveal the LIC parameters. We demonstrate the sensitivity of the heliospheric ENA fluxes to the ionization state of the LIC. The axi-symmetric model of the solar wind/LIC interaction includes the self-consistent treatment of the plasma-gas coupling and Monte Carlo simulations of the neutral gas distribution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Jokipii  J.R.  Giacalone  J. 《Space Science Reviews》1998,83(1-2):123-136
Anomalous cosmic rays are a heliospheric phenomenon in which interstellar neutral atoms stream into the heliosphere, are ionized by either solar radiation or the solar wind, and are subsequently accelerated to very high energies, greater than 1 GeV. Current thinking has the bulk of the acceleration to very-high energies taking place, by the mechanism of diffusive shock acceleration, at the termination shock of the solar wind. Detailed two-dimensional numerical simulations and models based on this picture show broad agreement with a number of the observed properties of anomalous cosmic rays. Recent improvements to this picture include the observation of multiply charged cosmic rays and the suggestion that some "preacceleration" of the initially ionized particles occurs in the inner heliosphere.  相似文献   

11.
The Interstellar Boundary Explorer (IBEX) Science Operations Center is responsible for supporting analysis of IBEX data, generating special payload command procedures, delivering the IBEX data products, and building the global heliospheric maps of energetic neutral atoms (ENAs) in collaboration with the IBEX team. We describe here the data products and flow, the sensor responses to ENA fluxes, the heliospheric transmission of ENAs (from 100 AU to 1 AU), and the process of building global maps of the heliosphere. The vast majority of IBEX Science Operations Center (ISOC) tools are complete, and the ISOC is in a remarkable state of readiness due to extensive reviews, tests, rehearsals, long hours, and support from the payload teams. The software has been designed specifically to support considerable flexibility in the process of building global flux maps. Therefore, as we discover the fundamental properties of the interstellar interaction, the ISOC will iteratively improve its pipeline software, and, subsequently, the heliospheric flux maps that will provide a keystone for our global understanding of the solar wind’s interaction with the interstellar medium. The ISOC looks forward to the next chapter of the IBEX mission, as the tools we have developed will be used in partnership with the IBEX team and the scientific community over the coming years to define our global understanding of the solar wind’s interaction with the local interstellar medium.  相似文献   

12.
The Interstellar Boundary Explorer (IBEX) mission is exploring the frontiers of the heliosphere where energetic neutral atoms (ENAs) are formed from charge exchange between interstellar neutral hydrogen atoms and solar wind ions and pickup ions. The geography of this frontier is dominated by an unexpected nearly complete arc of ENA emission, now known as the IBEX ‘Ribbon’. While there is no consensus agreement on the Ribbon formation mechanism, it seems certain this feature is seen for sightlines that are perpendicular to the interstellar magnetic field as it drapes over the heliosphere. At the lowest energies, IBEX also measures the flow of interstellar H, He, and O atoms through the inner heliosphere. The asymmetric oxygen profile suggests that a secondary flow of oxygen is present, such as would be expected if some fraction of oxygen is lost through charge exchange in the heliosheath regions. The detailed spectra characterized by the ENAs provide time-tagged samples of the energy distributions of the underlying ion distributions, and provide a wealth of information about the outer heliosphere regions, and beyond.  相似文献   

13.
The combination of recent observational and theoretical work has completed the catalog of the sources of heliospheric Pickup Ions (PUIs). These PUIs are the seed population for Anomalous Cosmic Rays (ACRs), which are accelerated to high energies at or beyond the Termination Shock (TS). For elements with high First Ionization Potentials (high-FIP atoms: e.g., H, He, Ne, etc.), the dominant source of PUIs and ACRs is from neutral atoms that drift into the heliosphere from the Local Interstellar Medium (LISM) and, prior to ionization, are influenced primarily by solar gravitation and radiation pressure (for H). After ionization, these interstellar ions are pickup up by the solar wind, swept out, and are either accelerated near the TS or beyond it. Elements with low first ionization potentials (low-FIP atoms: e.g., C, Si, Mg, Fe, etc.) are also observed as PUIs by Ulysses and as ACRs by Wind and Voyager. But the low-FIP composition of this additional component reveals a very different origin. Low-FIP interstellar atoms are predominantly ionized in the LISM and therefore excluded from the heliosphere by the solar wind. Remarkably, a low-FIP component of PUIs was hypothesized by Banks (J. Geophys. Res. 76, 4341, 1971) over twenty years prior to its direct detection by Ulysses/SWICS (Geiss et al., J. Geophys. Res. 100(23), 373, 1995) The leading concept for the generation of Inner Source PUIs involves an effective recycling of solar wind on grains near the Sun, as originally suggested by Banks. Voyager and Wind also observe low-FIP ACRs, and a grain-related source appears likely and necessary. Two concepts have been proposed to explain these low-FIP ACRs: the first concept involves the acceleration of the Inner Source of PUIs, and the second involves a so-called Outer Source of PUIs generated from solar wind interaction with the large population of grains in the Kuiper Belt. We review here the observational and theoretical work over the last decade that shows how solar wind and heliospheric grains interact to produce pickup ions, and, in turn, anomalous cosmic rays. The inner and outer sources of pickup ions and anomalous cosmic rays exemplify dusty plasma interactions that are fundamental throughout the cosmos for the production of energetic particles and the formation of stellar systems.  相似文献   

14.
The consequences of the interaction between the solar wind and the local interstellar medium for the wind region enclosed by the heliospheric shock are reviewed. After identifying the principal mechanisms to influence the dynamics of the solar wind, an approach allowing the simultaneous incorporation of neutral atoms, pick-up ions, cosmic rays and energetic electrons into a multifluid model of the expanding wind plasma is outlined. The effects of these particle species are discussed in detail, with special emphasis on the electron component which behaves more like a quasi-static hot gas rather than an expanding fluid. This electron gas is effectively trapped within a three-dimensional trough of a circumsolar electric potential whose outer fringes are possibly determined by the density distribution of anomalous cosmic rays. The electrons are proven to be a globally structered component of great importance for the solar wind momentum flow contributing to a triggering of the solar wind dynamics by asymmetric interstellar boundary conditions. Finally, the consequences for the relative motion of the Sun and the local interstellar medium as well as for the solar system as a whole are described.  相似文献   

15.
Voyagers 1 and 2 are now observing the latitudinal structure of the heliospheric magnetic field in the distant heliosphere (the legion between - 30 AU and the termination shock). Voyager 2 is observing the influence of the interstellar medium on the solar wind. The pressure of the interstellar pickup protons, measured by their contribution to pressure balanced structures, is greater than or equal to the magnetic pressure and much greater than the thermal pressures of the solar wind protons and electrons in the distant heliosphere. The solar wind speed is observed to decrease and the proton temperature increase with increasing distance from the sun. This may result from the production of pickup ions by the charge exchange process with the interstellar neutrals. The introduction of the pickup ions into the dynamics of the magnetized solar wind plasma appears to be an important new process which must be considered in future theoretical studies of the termination shock and boundary with the local interstellar medium.  相似文献   

16.
The Interstellar Boundary Explorer (IBEX) is a small explorer mission that launched on 19 October 2008 with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium. IBEX is designed to achieve this objective by answering four fundamental science questions: (1) What is the global strength and structure of the termination shock, (2) How are energetic protons accelerated at the termination shock, (3) What are the global properties of the solar wind flow beyond the termination shock and in the heliotail, and (4) How does the interstellar flow interact with the heliosphere beyond the heliopause? The answers to these questions rely on energy-resolved images of energetic neutral atoms (ENAs), which originate beyond the termination shock, in the inner heliosheath. To make these exploratory ENA observations IBEX carries two ultra-high sensitivity ENA cameras on a simple spinning spacecraft. IBEX’s very high apogee Earth orbit was achieved using a new and significantly enhanced method for launching small satellites; this orbit allows viewing of the outer heliosphere from beyond the Earth’s relatively bright magnetospheric ENA emissions. The combination of full-sky imaging and energy spectral measurements of ENAs over the range from ~10 eV to 6 keV provides the critical information to allow us to achieve our science objective and understand this global interaction for the first time. The IBEX mission was developed to provide the first global views of the Sun’s interstellar boundaries, unveiling the physics of the heliosphere’s interstellar interaction, providing a deeper understanding of the heliosphere and thereby astrospheres throughout the galaxy, and creating the opportunity to make even greater unanticipated discoveries.  相似文献   

17.
Knowledge of the elemental composition of the interstellar gas is of fundamental importance for understanding galactic chemical evolution. In addition to spectroscopic determinations of certain element abundance ratios, measurements of the composition of interstellar pickup ions and Anomalous Cosmic Rays (ACRs) have provided the principal means to obtain this critical information. Recent advances in our understanding of particle acceleration processes in the heliosphere and measurements by the Voyagers of the energy spectra and composition of energetic particles in the heliosheath provide us with another means of determining the abundance of the neutral components of the local interstellar gas. Here we compare the composition at the termination shock of six elements obtained from measurements of (a) pickup ions at ~5 AU, (b) ACRs in the heliosphere at ~70 AU, and (c) energetic particles as well as (d) ACRs in the heliosheath at ~100 AU. We find consistency among these four sets of derived neutral abundances. The average interstellar neutral densities at the termination shock for H, N, O, Ne and Ar are found to be 0.055±0.021 cm?3, (1.44±0.45)×10?5 cm?3, (6.46±1.89)×10?5 cm?3, (8.5±3.3)×10?6 cm?3, and (1.08±0.49)×10?7 cm?3, respectively, assuming the He density is 0.0148±0.002 cm?3.  相似文献   

18.
R. P. Lin 《Space Science Reviews》2006,124(1-4):233-248
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies, but it appears that a different acceleration process, one associated with fast Coronal Mass Ejections (CMEs) is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. The observations of the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun strongly imply that the acceleration is closely related to the magnetic reconnection that releases the energy in solar flares. Here preliminary comparisons of the RHESSI observations with observations of both energetic electrons and ions near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

19.
B. Heber 《Space Science Reviews》2013,176(1-4):265-278
The Ulysses spacecraft had been the first to orbit the Sun over its poles and to explore the heliosphere at these high heliolatitudes. It has now completed three fast latitude scans, two at solar minimum and one at solar maximum. Since its launch in October 1990, this mission has led to several surprising discoveries concerning energetic particles, cosmic rays, Jovian electrons, the solar wind, the heliospheric magnetic field and the global features of the heliosphere. This review addresses the propagation and modulation of cosmic rays and other charged particles from an observational point of view with emphasis on what has been learned from exploring the inner heliosphere to high heliolatitudes.  相似文献   

20.
The spectra of galactic cosmic rays that are observed inside the heliosphere result from the interaction of the spectra present in the local interstellar medium with the structured but turbulent magnetic field carried by the solar wind. Observational tests of solar modulation theory depend on comparisons between spectra inside and outside the heliosphere. Our knowledge of the local interstellar spectra are indirect, using extrapolations of interplanetary spectra measured at high energies where solar modulation effects are minimal and modeling of the physical processes that occur during particle acceleration and transport in the interstellar medium. The resulting estimates of the interstellar spectra can also be checked against observations of the effects that cosmic rays have on the chemistry of the interstellar medium and on the production of the diffuse galactic gamma-ray background. I review the present understanding of the local galactic cosmic-ray spectra, emphasizing the constraints set by observations and the uncertainties that remain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号