首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed “cool core” structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.  相似文献   

3.
Four decades ago, the firm detection of an Fe-K emission feature in the X-ray spectrum of the Perseus cluster revealed the presence of iron in its hot intracluster medium (ICM). With more advanced missions successfully launched over the last 20 years, this discovery has been extended to many other metals and to the hot atmospheres of many other galaxy clusters, groups, and giant elliptical galaxies, as evidence that the elemental bricks of life—synthesized by stars and supernovae—are also found at the largest scales of the Universe. Because the ICM, emitting in X-rays, is in collisional ionisation equilibrium, its elemental abundances can in principle be accurately measured. These abundance measurements, in turn, are valuable to constrain the physics and environmental conditions of the Type Ia and core-collapse supernovae that exploded and enriched the ICM over the entire cluster volume. On the other hand, the spatial distribution of metals across the ICM constitutes a remarkable signature of the chemical history and evolution of clusters, groups, and ellipticals. Here, we summarise the most significant achievements in measuring elemental abundances in the ICM, from the very first attempts up to the era of XMM-Newton, Chandra, and Suzaku and the unprecedented results obtained by Hitomi. We also discuss the current systematic limitations of these measurements and how the future missions XRISM and Athena will further improve our current knowledge of the ICM enrichment.  相似文献   

4.
Galaxy clusters are ideal tracers of the large-scale structure and evolution of the universe. They are thus good probes for the matter content of the universe, the existence of dark matter, and for the statistics of the large-scale structure of the matter distribution. X-ray observations provide a very effective tool to characterize individual galaxy clusters as well as the cluster population. With the detailed analysis of X-ray observations of galaxy clusters the matter composition of clusters is obtained which can be taken as representative of the matter composition of the universe. Based on galaxy cluster surveys in X-rays a census of the galaxy cluster population and statistical measures of the spatial distribution of clusters is obtained. Comparison of the results with predictions from cosmological models yields interesting cosmological model constraints and in particular favours a low density universe.  相似文献   

5.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   

6.
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.  相似文献   

7.
Because of their deep gravitational potential wells, clusters of galaxies retain all the metals produced by the stellar populations of the member galaxies. Most of these metals reside in the hot plasma which dominates the baryon content of clusters. This makes them excellent laboratories for the study of the nucleosynthesis and chemical enrichment history of the Universe. Here we review the history, current possibilities and limitations of the abundance studies, and the present observational status of X-ray measurements of the chemical composition of the intra-cluster medium. We summarise the latest progress in using the abundance patterns in clusters to put constraints on theoretical models of supernovae and we show how cluster abundances provide new insights into the star-formation history of the Universe.  相似文献   

8.
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.  相似文献   

9.
Starting with nearby galaxy clusters like Virgo and Coma, and continuing out to the furthest galaxy clusters for which ISO results have yet been published (z = 0.56), we discuss the development of knowledge of the infrared and associated physical properties of galaxy clusters from early IRAS observations, through the “ISO-era” to the present, in order to explore the status of ISO's contribution to this field. Relevant IRAS and ISO programmes are reviewed, addressing both the cluster galaxies and the still-very-limited evidence for an infrared-emitting intra-cluster medium. ISO made important advances in knowledge of both nearby and distant galaxy clusters, such as the discovery of a major cold dust component in Virgo and Coma cluster galaxies, the elaboration of the correlation between dust emission and Hubble-type, and the detection of numerous Luminous Infrared Galaxies (LIRGs) in several distant clusters. These and consequent achievements are underlined and described. We recall that, due to observing time constraints, ISO's coverage of higher-redshift galaxy clusters to the depths required to detect and study statistically significant samples of cluster galaxies over a range of morphological types could not be comprehensive and systematic, and such systematic coverage of distant clusters will be an important achievement of the Spitzer Observatory. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.  相似文献   

10.
We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.  相似文献   

11.
The experimental basis of cosmic-ray astrophysics consists of detailed measurements of the cosmic-ray intensity arriving near earth, of observations of photons in all wavelength bands generated by cosmic ray interactions in the interstellar medium or in the cosmic-ray sources, and of laboratory studies of high energy particle interactions. In addition, a large body of astronomical information on the composition of stellar atmospheres and of the interstellar medium, including interstellar dust grains, is required to bring cosmic-ray data into context with subjects such as nucleosynthesis and evolution of the galaxy. This report will summarize some of these observational questions, will discuss specific experimental needs in current research, and will review some of the key measurements that can be expected for the near future. This review will neither be complete nor attempt to establish observational priorities. However, it will illustrate the variety of observational activities that are required to achieve progress.  相似文献   

12.
In this paper we present the new chemical-spectro-photometric models of population synthesis by Bressan, Chiosi & Fagotto (1993). The models are specifically designed for elliptical galaxies. They include the presence of dark matter and galactic winds triggered by the energy deposit from supernovae and winds of massive stars. The models are aimed at studying the UV-excess and its dependence on the metallicity, the color-magnitude relation, and the color evolution as a function of the redshift. It is shown that in order to explain the color-magnitude relation as a result of galactic winds, the energy input from massive stars is required. Supernovae alone cannot provide sufficient energy to start galactic wind before the metallicity and hence colors have got saturated. We show that the main source of the UV-excess are the old, hot HB and AGB manque stars of high metallicity present in varying percentages in the stellar content of a galaxy. Since in our model the mean and maximum metallicity are ultimately driven by the mass of the galaxy, this provides a natural explanation for the observed correlation between UV-excess and metallicity. Finally, looking at the color evolution as function of the redshift, we suggest that a sudden change occurring in the color (1550-V) at the onset of the old, hot HB and AGB manque stars of high metallicity, is a good age indicator. The detection of this feature at a certain redshift would impose firm constraints on the underlying cosmological model of the universe.  相似文献   

13.
Now that extragalactic deuterium observations are being made, Big Bang Nucleosynthesis (BBN) is on the verge of undergoing a transformation. Previously, the emphasis was on demonstrating the concordance of the Big Bang Nucleosynthesis model with the abundances of the light isotopes extrapolated back to their primordial values using stellar and Galactic evolution theories. Once the primordial deuterium abundance is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and Galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is non-baryonic. Comparison of baryonic density arguments from Lyman- clouds, x-ray gas in clusters, and the microwave anisotropy are made and shown to be consistent with the BBN value.  相似文献   

14.
Rephaeli  Y. 《Space Science Reviews》2002,100(1-4):61-72
Scattering of the cosmic microwave background (CMB) radiation by hot gas in clusters of galaxies produces a unique spectral signature – the Sunyaev–Zeldovich (S–Z) effect – that constitutes an important cosmological probe. The effect has been sensitively measured in more than 40 clusters, mostly with ground-based interferometric arrays operating at low microwave frequencies. These measurements have already yielded important information on cluster masses, and the Hubble constant. The scientific yield will be greatly increased when spectral and high-resolution spatial measurements of the effect in a large sample of nearby clusters will be made with stratospheric telescopes equipped with bolometric arrays. I review the current status of observational and theoretical S–Z work, and describe the main goals and challenges of using the effect as a more precise probe of cluster properties and cosmological parameters.  相似文献   

15.
We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.  相似文献   

16.
There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.  相似文献   

17.
We present models of the extragalactic background light (EBL) based on several scenarios of galaxy formation and evolution. We have treated galaxy formation with the Press-Schecter approximation for both cold dark matter (CDM) and cold+hot dark matter (CHDM) models, representing a moderate (z f 3) and a late (z f 1) era of galaxy formation respectively. Galaxy evolution has been treated by considering a variety of stellar types, different initial mass functions and star formation histories, and with an accounting of dust absorption and emission. We find that the dominant factor influencing the EBL is the epoch of galaxy formation. A recently proposed method for observing the EBL utilizing the absorption of 0.1 to 10 TeV gamma-rays from active galactic nuclei (AGN) is shown to be capable of discriminating between different galaxy formation epochs. The one AGN viewed in TeV light, Mrk 421, does show some evidence for a cutoff above 3 TeV; based on the EBL models presented here, we suggest that this is due to extinction in the source. The large absorption predicted at energies > 200 GeV for sources at z > 0.5 indicates that observations of TeV gamma-ray bursts (GRB) would constrain or eliminate models in which the GRB sources lie at cosmological distances.Now at University of Chicago, Dept. of Astronomy & Astrophysics.  相似文献   

18.
One of the most powerful tests of the stellar evolution theory is analysis of stars' atmospheric chemical composition. It has shown that some non-standard mixing different from ordinary convection, semiconvection and convective overshooting seems to occur in stellar interiors. In the present study Zahn's rotationally induced turbulent diffusion is assumed to be responsible for such kind of mixing. We compare results of our evolutionary calculations with available observational data for massive main-sequence stars and red giants in globular clusters.  相似文献   

19.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   

20.
We review our recent results of Alfvén wave-driven winds. First, we present the result of self-consistent 1D MHD simulations for solar winds from the photosphere to interplanetary region. Here, we emphasize the importance of the reflection of Alfvén waves in the density stratified corona and solar winds. We also introduce the recent Hinode observation that might detect the reflection signature of transverse (Alfvénic) waves by Fujimura and Tsuneta (Astrophys. J. 702:1443, 2009). Then, we show the results of Alfvén wave-driven winds from red giant stars. As a star evolves to the red giant branch, the properties of stellar winds drastically change from steady coronal winds to intermittent chromospheric winds. We also discuss how the stellar evolution affects the wave reflection in the stellar atmosphere and similarities and differences of accretion disk winds by MHD turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号