首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hans J. Haubold   《Space Policy》2003,19(1):67-69
Since 1988 the United Nations, through its Programme on Space Applications, has been supporting the establishment and operation of regional Centres for Space Science and Technology Education in Africa, Asia and the Pacific, Latin America and the Caribbean, and Western Asia. Simultaneously, education curricula have been developed for remote sensing and geographic information systems, satellite communications, satellite meteorology and global climate, and space and atmospheric science. The report briefly reviews these developments and highlights the most recent updated education curricula in the four disciplines that have been made available in 2002, in the six official languages of the United Nations, for implementation at the regional centres and beyond.  相似文献   

2.
Implementing remote sensing and geographic information system (GIS) education programmes by the UN-affiliated regional centres for space science and technology in developing nations poses challenges because of the imbalance between industrialized and developing nations in the number of experts able to cover the topics defined by the core curriculum. This scenario creates a window of opportunity for developing instructional materials using information technologies to support local experts in teaching these topics. The goal behind teaching remote sensing and GIS should focus on providing scholars with the skills and capacity to allow them to engage in active work after they complete the UN programme. One of the most effective ways of learning process associated with technical skills is through the problem-solving exercises of Problem-Based Learning. A multi-layered decision-making module that provides feedback and allows multiple final solutions is proposed. Module development and implementation includes an initial stage focusing on assessing UN-affiliated regional centres RS/GIS application interest areas and cultural framework and a second phase dedicated to converting the various materials developed in English to the other five UN official languages.  相似文献   

3.
Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships.A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that “a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action”. [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships.This paper describes select EPOP projects and makes the case for using innovative, emerging information technologies to transfer space exploration knowledge to students, engage educators from across the globe in discourse about science curricula, and foster multimedia collaborations that inform citizens about the benefits of space exploration for life on Earth. Special references are made to educational activities conducted at professional meetings in Austria, Canada, France, China, Greece, Italy, Russia, Scotland and Spain.  相似文献   

4.
Space technology can make an immense contribution to solving the problems of the world as a whole, and the developing nations in particular. This report summarizes the use of satellites by developing countries in the fields of communications, remote sensing, disaster management and space science. India and China, in particular, have built up impressive capabilities in several of these areas, but the great majority of developing countries still do not have access to this technology. The author addresses a number of proposals to the international community for bringing the satellite revolution to the developing world.  相似文献   

5.
The recent enthusiastic initiatives in the USA to commercialize space activities are also likely to facilitate and accelerate Third World ventures in space. This article outlines the history of Third World space activities and points to the danger that these nations will use satellite launch technology for military applications. Competitive economic and political pressures are aiding the migration of older missile technology to Third World Nations. The author argues for the establishment of an International Missile Technology Regime, which would limit the transfer of space launch technology to nations which are in full compliance with the 1968 Nuclear Non-Proliferation Treaty.  相似文献   

6.
卫星应用在开发太空资源方面已取得丰硕成果,文中从卫星空间环境探测、卫星天文观察和卫星侦察监视三个角度论述了卫星在空间科学和军事侦察方面的应用。  相似文献   

7.
Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the “inspirational and educational value of space exploration” [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics’ (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2].Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives.This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.  相似文献   

8.
Countries on every continent are making new or renewed commitments to domestic satellite programs. These programs have the potential to address national needs by enhancing access to information, improving infrastructure and providing inspiration to the public. How do countries without local expertise in space technology begin a new satellite program? What is the role of international collaboration in supporting the efforts of a new space fairing country? This paper explores such questions by highlighting outputs from intensive field work in Africa and Asia. Specifically, the study explores case studies of early space activity in these countries to search for lessons about the management of a young space program. The observations from field work are compared to ideas from scholarly literature on technological learning. The findings are organized using principles from systems architecture. The paper presents a model that captures many of the influences and strategic decision areas for a collaborative satellite development project. The paper also highlights the growth of capability among African countries in the area of satellite technology.  相似文献   

9.
The UN Office for Outer Space Affairs, through the IHY Secretariat and the United Nations Basic Space Science Initiative (UNBSSI), assists scientists and engineers world-wide to participate in the International Heliophysical Year (IHY) 2007. A major thrust of IHY/UNBSSI is to deploy arrays of small, inexpensive instruments such as magnetometers, radio telescopes, GPS receivers, all-sky cameras, etc. around the world to allow global measurements of ionospheric and heliospheric phenomena. The small instrument program is envisioned as a partnership between instrument providers and instrument hosts in developing nations, with the former providing the instruments, the host nation the manpower, facilities and operational support, typically at a local university. Funds are not available through IHY/UNBSSI to build the instruments; these must be obtained through the normal proposal channels. All instrument operational support for local scientists, facilities, data acquisition, etc. will be provided by the host nation. The IHY/UNBSSI can facilitate the deployment of several of these networks and existing databases and relevant software tools will be identified to promote space science activities in developing nations. Extensive data on space science have been accumulated by a number of space missions. Similarly, long-term databases are available from ground-based observations. These data can be utilized in ways different from those originally intended for understanding the heliophysical processes. This report provides an overview of IHY/UNBSSI, its achievements, future plans and outreach to the 192 member states of the United Nations.  相似文献   

10.
There is increasingly broad concern in the USA today about the quality, vibrancy and appeal of science and technical education in general and space education in particular. There needs to be a robust link between the educational community (i.e. the primary and secondary schools as well as colleges and universities) and a well-defined space research and exploration agenda that is strongly supported by the space industry, NASA and other relevant US governmental agencies. Without such a renewal of mission and new goals it will be difficult to re-invigorate and expand quality space education programs. A workshop was therefore convened in 2003 to analyze the problem, discuss new initiatives, organize a survey inviting suggestions from a range of relevant players and draw conclusions on what the USA needs to do to improve space education in the 21st century. Although the focus of this workshop was on space education in the USA the international dimensions of this problem were also addressed and the firm conclusion was reached that similar issues and concerns apply in Europe, Canada, Japan and other spacefaring nations. This article is an edited version of a White Paper subsequently produced to highlight the problem, summarize the proceedings of the workshop and present the results of the survey. Greater clarity in the definition of national space goals, the upgrading of teachers’ skills and an increase in technical scholarships are among the steps recommended.  相似文献   

11.
本文讨论了卫星教育在发展中国家的作用以及微型地球站的发展对卫星教育的潜在影响。在展望未来四十年卫星技术和地球站技术发展前景的基础上,对未来卫星教育在发展中国家的应用情况和可能的模式进行了探讨,指出了利用微型卫星地球站实现个人化的教育是一种有蓬勃发展前途的方式。为了发展灵活方便的卫星教育系统,文中指出了在未来几十年内应优先发展的关键技术以及加强国际合作的必要性,同时提出了在发展中国家建立卫星教育发展中心的设想。  相似文献   

12.
This report presents findings from a specialist meeting of spatially-minded researchers and administrators from education and industry to consider prospects for introducing courses and curricula on spatial thinking in higher education. More than 40 participants explored the rationale for expanding student exposure to concepts, tools, and applications of spatial reasoning across a range of science, engineering, and humanities disciplines. The focus was on what we know and what we need to know to make the case for space, underscoring basic research on what is meant by spatial thinking and on variations in the spatial reasoning skills required in different domains of knowledge. The need for rigorous assessments of learning outcomes associated with different approaches to teaching spatial thinking was emphasized.  相似文献   

13.
India in Asia and Brazil in Latin America are regarded as the most promising global economies. This paper examines the openings and possibilities for space technology collaboration between India and Latin American states under the larger rubric of science and technology collaboration. While the distance and language barriers between the two regions have proved a hindrance in the past, the paper proceeds with an assumption that, in the 21st century, such barriers should not be a limitation on developing strategic, economic, and science and technology partnerships among nation-states. The paper argues that the Latin American states are keen to have their own satellites because of their significant utility in the socioeconomic sector and this offers an opportunity to India to use cooperation in space technologies as a powerful tool for engagement in Latin America.  相似文献   

14.
Satellites have been rightly described as the lifeblood of the entire space industry and the number of satellites ordered or launched per year is an important defining metric of the industry's level of activity, such that trends and variability in this volume have significant strategic impact on the space industry. Over the past 40+ years, hundreds of satellites have been launched every year. Thus an important dataset is available for time series analysis and identification of trends and cycles in the various markets of the space industry. This article reports findings of a study for which we collected data on over 6000 satellites launched since 1960 on a yearly basis. We grouped the satellites into three broad categories – defense and intelligence, science, and commercial satellites – and identified and discussed the main trends and cyclical patterns for each of these. Institutional customers (defense and intelligence, and science) accounted for over two-thirds of all satellites launched within our time period (1960–2008), and, in the 1960s and 1970s, they accounted for 90% and 73.5%, respectively. A fair conclusion from this data is that the space industry was enabled by, and grew because of the institutional customers, not commercial market forces. However, when the launch data is examined more closely, a growing influence of the commercial sector is noticeable. Over the past two decades communication satellites accounted for roughly half of all launches, thus reflecting an important shift in the space industry in which the commercial sector is playing an equal role (on a launch volume basis) to that of the institutional market. Cyclical patterns in the satellite launch volume over the past decade are separately discussed before we sum up with a conclusion.  相似文献   

15.
Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal.With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world.Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses.Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme.Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation (ISRO) is already a part of the International initiative called Satellite Aided Search and Rescue System.The programme to set up satellite-based Village Resource Centres (VRCs) across India, for providing a variety of services relevant to the rural communities, is also a unique societal application of space technology. The VRCs are envisaged as single window delivery mechanism for a variety of space-based products and services, such as tele-education; telemedicine; information on natural resources for planning and development at local level; interactive advisories on agriculture, fisheries, land and water resources management, livestock management, etc.; interactive vocational training towards alternative livelihood; e-governance; weather information; etc.This paper describes the various possibilities and potentials of Satcom and Remote Sensing technologies for societal applications. The initiatives taken by Indian Space Research Organisation in this direction are highlighted.  相似文献   

16.
For decades, Western European nations have been comparatively uninterested in the military use of space, largely content to rely on the far greater resources of the USA in this area. Today, however, the traditional belief that the security requirements of ‘the West’ are synonymous with those of the USA is increasingly open to challenge. A new European defence identity is emerging, keen to achieve greater autonomy in the security field, albeit remaining within the overarching framework of NATO. Consequently there is a growing requirement for indigenous European capabilities in terms of military space assets. This requirement has been met in part by the establishment, by the Western Union, of a satellite centre in Spain, which currently analyses commercially procured satellite imagery. The centre's capabilities may be expanded if the WEU states decide to add a space-based element — either their own satellite system, or participation in an existing multinational programme. Such a decision is due to be taken towards the end of 1995. This paper concludes by briefly examining the political and security implications of such a decision.  相似文献   

17.
For over two decades, multilateral treaties have governed the spaceborne activities of nations in a variety of situations. In recent years, however, it has been apparent that a legal vacuum exists concerning the activities of individual citizens who are sent into space by the spacefaring nations. Few laws exist which are specifically intended to regulate private individuals and entities in space. This situation has led to uncertainty for potential participants in NASA's international Space Station programme. Moreover, it now appears that the Intergovernmental Agreement concerning the Space Station may not solve the problem.  相似文献   

18.
Dr Jasani argues the urgent case for establishing an international satellite monitoring agency, with an arms control and conflict observation satellite (ACCOS). He gives examples of recent technology advances and cites the imminent major development of space weapons by the USA and the USSR as a pressing reason for setting up a verification and crisis control mechanism. Both Europe and the non-aligned nations are in a position to participate in orbiting an ACCOS.  相似文献   

19.
Satellite land remotely sensed data are used by scientists and resource managers world-wide to study similar multidisciplinary earth science problems. Most of their information requirements can be met by a small number of satellite sensor types. Moderate-resolution resource satellites and low-resolution environmental satellites are the most prominent of these, and they are the focus of this paper. Building, launching, and operating satellite systems are very expensive endeavors. Consequently, nations should change the current pattern of independently launching and operating similar, largely redundant resource and environmental satellite systems in favor of true and full collaboration in developing, launching, operating, and sharing the data from such systems of the future. The past decade has seen encouraging signs of increasing international collaboration in earth remote sensing, but full collaboration has not yet been attempted. A general strategy to achieve such international collaboration is presented here, including discussion of potential obstacles, ideas for organizing and overseeing the long-term process toward collaboration, and short-term objectives whereby early successes critical to accomplishing long-term goals can be achieved.  相似文献   

20.
对空间目标(神舟七号飞船)动态成像的伴随卫星系统的有关技术条 件和参数进行了分析和设计。设计双焦距光学系统适应大纵深范围成像,利用偏置动量稳定 减小释放后初始姿态扰动度,配合章动特点扩大观测视场,采用姿态导引律实现对观测 目标 的姿态指向跟踪,并给出满足清晰观测的相机参数设计。该卫星系统设计成功应用于神舟七 号载人飞行任务,并成功完成了首次对飞船在轨运行的全景照相观测,在轨试验结果表明伴 星系统各项技术条件和参数的设计是合理的,可以很好的完成对目标的清晰成像。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号