首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astrophysical plasmas can have parameters vastly different from the more studied laboratory and space plasmas. In particular, the magnetic fields can be the dominant component of the plasma, with energy-density exceeding the particle rest-mass energy density. Magnetic fields then determine the plasma dynamical evolution, energy dissipation and acceleration of non-thermal particles. Recent data coming from astrophysical high energy missions, like magnetar bursts and Crab nebula flares, point to the importance of magnetic reconnection in these objects. In this review we outline a broad spectrum of problems related to the astrophysical relevant processes in magnetically dominated relativistic plasmas. We discuss the problems of large scale dynamics of relativistic plasmas, relativistic reconnection and particle acceleration at reconnecting layers, turbulent cascade in force-fee plasmas. A number of astrophysical applications are also discussed.  相似文献   

2.
Astrophysical fluids have very large Reynolds numbers and therefore turbulence is their natural state. Magnetic reconnection is an important process in many astrophysical plasmas, which allows restructuring of magnetic fields and conversion of stored magnetic energy into heat and kinetic energy. Turbulence is known to dramatically change different transport processes and therefore it is not unexpected that turbulence can alter the dynamics of magnetic field lines within the reconnection process. We shall review the interaction between turbulence and reconnection at different scales, showing how a state of turbulent reconnection is natural in astrophysical plasmas, with implications for a range of phenomena across astrophysics. We consider the process of magnetic reconnection that is fast in magnetohydrodynamic (MHD) limit and discuss how turbulence—both externally driven and generated in the reconnecting system—can make reconnection independent on the microphysical properties of plasmas. We will also show how relaxation theory can be used to calculate the energy dissipated in turbulent reconnecting fields. As well as heating the plasma, the energy dissipated by turbulent reconnection may cause acceleration of non-thermal particles, which is briefly discussed here.  相似文献   

3.
Transonically rotating toroidal plasmas occur at all scales in the plasma universe and, recently, also in laboratory tokamak plasmas. This offers great opportunities for new insights of the effects of transonic transitions on the background equilibrium flows, and on the waves and instabilities excited. Transfer of knowledge and computational methods on MHD and two-fluid waves and instabilities in magnetically confined laboratory fusion plasmas to space and astrophysical plasmas is seriously hampered though by two related difficulties:
  1. in contrast to laboratory plasmas, astrophysical plasmas always have sizeable plasma flows so that they can never be described as a static equilibrium;
  2. these flows are usually ‘transonic’, i.e., surpass one of the critical speeds related to the different flow regimes with quite different physical characteristics.
Based on previously obtained MHD results on the stationary states and instabilities of transonically rotating accretion disks about compact objects, the extension to two-fluid plasmas is initiated: A variational principle for the computation of two-fluid stationary states is constructed which involves seven fields determining the different physical variables, and six arbitrary stream functions that should be determined by spatially resolved astrophysical observations. It exhibits all the intricacies due to the electron and ion flow excursions from the magnetic flux surfaces. New hyperbolic flow regimes are found with quite different properties than the MHD ones.  相似文献   

4.
Nonlinear modes are investigated in magnetized dusty plasmas, where the dust dynamics is modelled by a number of cold, highly negatively charged and very massive fluids, besides ordinary electrons and protons. Several low-frequency motions occur which are typical for the dust components, some of them described by model equations such as the derivative nonlinear Schrödinger equation for electromagnetic waves. One can include equilibrium drifts and even fluctuations in the grain charges. Most of the preceding conclusions are relevant for different kinds of astrophysical and heliospheric plasmas.  相似文献   

5.
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.  相似文献   

6.
Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.  相似文献   

7.
Successfully modeling X-ray emission from astrophysical plasmas requires a wide range of atomic data to be rapidly accessible by modeling codes, enabling calculation of synthetic spectra for fitting with observations. Over many years the astrophysical databases have roughly kept pace with the advances in detector and spectrometer technology. We outline here the basic atomic processes contributing to the emission from different types of plasmas and briefly touch on the difference between the methods used to calculate this data. We then discuss in more detail the different issues addressed by atomic databases in regards to what data to store and how to make it accessible. Finally, the question of the effect of uncertainties in atomic data is explored, as a reminder to observers that atomic data is not known to infinite precision, and should not be treated as such.  相似文献   

8.
Space observations in several near-Earth environments have revealed the presence of positive-potential, large-amplitude electrostatic structures, associated with high-frequency disturbances, and indicative of electron dynamics. Earlier models proposed in terms of electron-acoustic solitary waves in a two-electron-temperature plasma were inadequate, because only negative potential structures could thus be obtained, whereas the observations point to positive potential structures. In this paper, it is shown that the theoretical restriction to negative potential solitons is due to the neglect of the inertia of the hot electrons, implicitly or explicitly assumed in previous papers. If hot electron inertia is retained, however, there exists a parameter range where positive potential solitary waves are formed, which can have important consequences for the re-interpretation of several astrophysical phenomena involving two-electron-temperature plasmas. PACS: 52.35.Mw, 52.35.Sb, 96.50.Ry  相似文献   

9.
There has been a remarkable discovery concerning particles that are accelerated in the solar wind. At low energies, in the region where the particles are being accelerated, the spectrum of the accelerated particles is always the same: when expressed as a distribution function, the spectrum is a power law in particle speed with a spectral index of ?5, and a rollover at higher particle speeds that can often be described as exponential. This common spectral shape cannot be accounted for by any conventional acceleration mechanism, such as diffusive shock acceleration or traditional stochastic acceleration. It has thus been necessary to invent a new acceleration mechanism to account for these observations, a pump mechanism in which particles are pumped up in energy through a series of adiabatic compressions and expansions. The conditions under which the pump acceleration is the dominant acceleration mechanism are quite general and are likely to occur in other astrophysical plasmas. In this paper, the most compelling observations of the ?5 spectra are reviewed; the governing equation of the pump acceleration mechanism is derived in detail; the pump acceleration mechanism is applied to acceleration at shocks; and, as an illustration of the potential applicability of the pump acceleration mechanism to other astrophysical plasmas, the pump mechanism is applied to the acceleration of galactic cosmic rays in the interstellar medium.  相似文献   

10.
This chapter mainly deals with magnetic reconnection and particle acceleration in relativistic astrophysical plasmas, where the temperature of the current sheet exceeds the rest mass energy and the Alfvén velocity is close to the speed of light. Magnetic reconnection now receives a great deal of interest for its role in many astrophysical systems such as pulsars, magnetars, galaxy clusters, and active galactic nucleus jets. We review recent advances that emphasize the roles of reconnection in high-energy astrophysical phenomena.  相似文献   

11.
Although macroscale features dominate astrophysical images and energetics, the physics is controlled through microscale transport processes (conduction, diffusion) that mediate the flow of mass, momentum, energy, and charge. These microphysical processes manifest themselves in key (all) boundary layers and also operate within the body of the plasma. Crucially, most plasmas of interest are rarefied to the extent that classical particle collision length- and time-scales are long. Collective plasma kinetic phenomena then serve to scatter or otherwise modify the particle distribution functions and in so-doing govern the transport at the microscale level. Thus collisionless plasmas are capable of supporting thin shocks, current sheets which may be prone to magnetic reconnection, and the dissipation of turbulence cascades at kinetic scales. This paper lays the foundation for the accompanying collection that explores the current state of knowledge in this subject. The richness of plasma kinetic phenomena brings with it a rich diversity of microphysics that does not always, if ever, simply mimic classical collision-dominated transport. This can couple the macro- and microscale physics in profound ways, and in ways which thus depend on the astrophysical context.  相似文献   

12.
Observations in the solar wind have revealed important insights into how energetic particles are accelerated in astrophysical plasmas. In circumstances where stochastic acceleration is expected, a suprathermal tail on the distribution function is formed with a common spectral shape: the spectrum is a power law in particle speed with a spectral index of −5. Recent theories for this phenomenon, in which thermodynamic constraints are applied to explain the common spectral shape, are reviewed. As an example of potential extensions of this theoretical work, consideration is given to the acceleration of Anomalous Cosmic Rays in the heliosheath.  相似文献   

13.
Manned Orbiting Laboratory (MOL) will provide the opportunity for space experiments and an assessment of man's ability to perform at zero gravity. The experiments discussed (nine in all) are designed to provide astrophysical and terrestrial information on ultraviolet, airglow, upper atmosphere chemistry, solar corona investigations, observation of objects at or near the sun's limb, cosmic ray investigations, planetary astronomy, and ionospheric investigations including plasmas.  相似文献   

14.
Thoma  M.H. 《Space Science Reviews》2002,100(1-4):141-151
Quantum field theory at finite temperature and density can be used for describing the physics of relativistic plasmas. Such systems are frequently encountered in astrophysical situations, such as the early universe, supernova explosions, and the interior of neutron stars. After a brief introduction to thermal field theory the usefulness of this approach in astrophysics will be exemplified in three different cases. First the interaction of neutrinos within a supernova plasma will be discussed. Then the possible presence of quark matter in a neutron star core and finally the interaction of light with the Cosmic Microwave Background will be considered.  相似文献   

15.
Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD??s frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth??s magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research??reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end??QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014?C1015 G, exceeding the quantum critical field B ??4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.  相似文献   

16.
The significant influences of turbulence in neutral fluid hydrodynamics are well accepted but the potential for analogous effects in space and astrophysical plasmas is less widely recognized. This situation sometimes gives rise to the question posed in the title; ??Who need turbulence??? After a brief overview of turbulence effects in hydrodynamics, some likely effects of turbulence in solar and heliospheric plasma physics are reviewed here, with the goal of providing at least a partial answer to the posed question.  相似文献   

17.
In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23.  相似文献   

18.
Waves and instabilities in dusty space plasmas   总被引:1,自引:0,他引:1  
  相似文献   

19.
Three types of processes, occurring in the weakly ionized plasmas of the Earth’s ionosphere as well as in the solar chromosphere, are being compared with each other. The main objective is to elaborate on the differences introduced primarily by the grossly different magnitudes of the densities, both with respect to the neutral and, even more so, to the plasma constituents. This leads to great differences in the momentum coupling from the plasma to the neutral component and becomes clear when considering the direct electric current component transverse to the magnetic field, called “Pedersen current”; in the ionosphere, which has no quasi-static counterpart in the chromosphere. The three classes of processes are related to the dynamical response of the two plasmas to energy influx from below and from above. In the first two cases, the energy is carried by waves. The third class concerns plasma erosion or ablation in the two respective regions in reaction to the injection of high Poynting and/or energetic particle fluxes.  相似文献   

20.
Line radiation emitted by highly ionized atoms embedded in hot laboratory plasmas can be utilized to obtain collisional rate coefficients for excitation and ionization. After a discussion of the principles underlying these measurements, the plasma device mostly used is explained briefly as are the various experimental techniques. All experimental results obtained so far are finally discussed and compared with theoretical calculations where possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号