首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.  相似文献   

2.
The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.  相似文献   

3.
McComas  D.J.  Bame  S.J.  Barker  P.  Feldman  W.C.  Phillips  J.L.  Riley  P.  Griffee  J.W. 《Space Science Reviews》1998,86(1-4):563-612
The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity) for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE; and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Mechanically stacked tandem cells consisting of GaAs thin-film upper cells and CuInSe2 thin-film lower cells have been developed to meet the increasing power needs projected for future spacecraft. The authors report the fabrication of the first highly efficient lightweight GaAs/CuInSe2 tandem cell on a 2-mil thick substrate, update recent performance improvements in thin-film GaAs/CuInSe2 tandem cells, and discuss their application to space power systems. The efficiency of 4-cm2 cells has improved to 21.6% AM0, the highest ever reported for a thin-film photovoltaic cell. Lightweight 4-cm2 tandem cells have been successfully fabricated with efficiencies as high as 20.8%. These cells weighed about 180 mg without optimized substrate trimming. Radiation and operating temperature effects on GaAs/CuInSe2 tandem cells are also discussed, and an interconnect scheme to form a voltage-matched string is described  相似文献   

6.
High energy neutral atom (hena) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Mitchell  D.G.  Jaskulek  S.E.  Schlemm  C.E.  Keath  E.P.  Thompson  R.E.  Tossman  B.E.  Boldt  J.D.  Hayes  J.R.  Andrews  G.B.  Paschalidis  N.  Hamilton  D.C.  Lundgren  R.A.  Tums  E.O.  Wilson  P.  Voss  H.D.  Prentice  D.  Hsieh  K.C.  Curtis  C.C.  Powell  F.R. 《Space Science Reviews》2000,91(1-2):67-112
The IMAGE mission will be the first of its kind, designed to comprehensively image a variety of emissions from the Earth's magnetosphere, with sufficient time resolution to follow the dynamics associated with the development of magnetospheric storms. Energetic neutral atoms (ENA) emitted from the ring current during storms are one of the key emissions that will be imaged. This paper describes the characteristics of the High Energy Neutral Atom imager, HENA. Using pixelated solid state detectors, imaging microchannel plates, electron optics, and time of flight electronics, HENA is designed to return images of the ENA emitting regions of the inner magnetosphere with 2 minute time resolution, at angular resolution of 8 degrees or better above the energy of 50 keV/nucleon. HENA will also image separately the emissions in hydrogen, helium, and oxygen above 30 keV/nucleon. HENA will reject energetic ions below 200 keV/charge, allowing ENA images to be returned in the presence of ambient energetic ions. HENA images will reveal the distribution and the evolution of energetic ion distributions as they are injected into the ring current during geomagnetic storms, as they drift about the Earth on both open and closed drift paths, and as they decay through charge exchange to pre-storm levels. Substorm ion injections will also be imaged, as will the regions of low altitude, high latitude ion precipitation into the upper atmosphere.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号