首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
It is suggested that gas composition at every point of the combustion chamber exit section be characterized by the temperature values T i (“ideal” temperature) corresponding to the local values of the air-to-fuel coefficient α i under complete fuel combustion (ν comb ≈ 1). It is assumed that the values of T i are distributed over the exit section area (gas mass) linearly and the values of T imax and T imin can be determined by the experimental data on the gas temperature fields in the combustion chambers. The distribution of temperatures T i is used when it is necessary to generalize the experimental data on fuel combustion efficiency in GTE combustion chambers.  相似文献   

2.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing β Cephei stars, and the other, β Cephei suspects. These lists then serve as a basis for discussing such topics as the location of β Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of β Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.  相似文献   

3.
Four decades ago, the firm detection of an Fe-K emission feature in the X-ray spectrum of the Perseus cluster revealed the presence of iron in its hot intracluster medium (ICM). With more advanced missions successfully launched over the last 20 years, this discovery has been extended to many other metals and to the hot atmospheres of many other galaxy clusters, groups, and giant elliptical galaxies, as evidence that the elemental bricks of life—synthesized by stars and supernovae—are also found at the largest scales of the Universe. Because the ICM, emitting in X-rays, is in collisional ionisation equilibrium, its elemental abundances can in principle be accurately measured. These abundance measurements, in turn, are valuable to constrain the physics and environmental conditions of the Type Ia and core-collapse supernovae that exploded and enriched the ICM over the entire cluster volume. On the other hand, the spatial distribution of metals across the ICM constitutes a remarkable signature of the chemical history and evolution of clusters, groups, and ellipticals. Here, we summarise the most significant achievements in measuring elemental abundances in the ICM, from the very first attempts up to the era of XMM-Newton, Chandra, and Suzaku and the unprecedented results obtained by Hitomi. We also discuss the current systematic limitations of these measurements and how the future missions XRISM and Athena will further improve our current knowledge of the ICM enrichment.  相似文献   

4.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   

5.
The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space probe (Venera 4, 1967). Venus appeared to be the first neighbor planet whose surface had been seen by us in the direct nearness made possible by means of the phototelevision device (Venera 9 and Venera 10, 1975). The reasons for the high interest in this planet are very simple. This planet is like the Earth by its mass, size and amount of energy obtained from the Sun and at the same time it differs sharply by the character of its atmosphere and climate. We hope that the investigations of Venus will lead us to define more precisely the idea of complex physical and physical-chemical processes which rule the evolution of planetary atmospheres. We hope to learn to forecast this evolution and maybe, in the far future, to control it. The last expeditions to Venus carried out in 1978 — American (Pioneer-Venus) and Soviet (Venera 11 and 12) — brought much news and it is interesting to sum up the results just now. The contents of this review are:
  1. The planet Venus — basic astronomical data.
  2. Chemical composition.
  3. Temperature, pressure, density (from 0 to 100 km).
  4. Clouds.
  5. Thermal regime and greenhouse effect.
  6. Dynamics.
  7. Chemical processes.
  8. Upper atmosphere.
  9. Origin and evolution.
  10. Problems for future studies
Here we have attempted to review the data published up to 1979 and partly in 1980. The list of references is not exhaustive. Publications of special issues of magazines and collected articles concerning separate space expeditions became traditional last time. The results obtained on the Soviet space probes Venera 9, 10 (the first publications) are collected in the special issues of Kosmicheskie issledovanija (14, Nos. 5, 6, 1975), analogous material about Venera 11, 12 is given at Pis'ma Astron. Zh. (5, Nos. 1 and 5, 1978), and in Kosmicheskie issledovanija (16, No. 5, 1979). The results of Pioneer-Venus mission are represented in two Science issues (203, No. 4382; 205, No. 4401) and special issue of J. Geophys. Res. (1980). We shall mention some articles to the same topic among previous surveys: (Moroz, 1971; Sagan, 1971; Marov, 1972; Hunten et al., 1977; Hoffman et al., 1977) and also the books by Kuzmin and Marov (1974) and Kondrat'ev (1977). Some useful information in the part of ground-based observations may be found in the older sources (for example, Sharonov, 1965; Moroz, 1967). For briefness we shall use as a rule the abbreviations of space missions names: V4 instead of Venera 4, M10 instead of Mariner 10 and so on. The first artificial satellites of Venus in the world (orbiters Venera 9 and 10) we shall mark as V9-O, V10-O unlike the descent probes V9, V10. Fly-by modules of Venera 11 and Venera 12 we shall mark as V11-F and V12-F. Pioneers descent probes — Large (Sounder), Day, Night and North — will be marked as P-L, P-D, P-Ni, P-No, orbiter as P-O, and bus as P-B.  相似文献   

6.
This paper summarizes the results obtained by the team “Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields” supported by the International Space Science Institute (ISSI) in Bern, Switzerland. We focus on the physical processes occurring in the outer heliosphere, especially at its boundary called the heliopause, and in the local interstellar medium. The importance of magnetic field, charge exchange between neutral atoms and ions, and solar cycle on the heliopause topology and observed heliocentric distances to different heliospheric discontinuities are discussed. It is shown that time-dependent, data-driven boundary conditions are necessary to describe the heliospheric asymmetries detected by the Voyager spacecraft. We also discuss the structure of the heliopause, especially due to its instability and magnetic reconnection. It is demonstrated that the Rayleigh–Taylor instability of the nose of the heliopause creates consecutive layers of the interstellar and heliospheric plasma which are magnetically connected to different sources. This may be a possible explanation of abrupt changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 when it was crossing the heliopause structure for a period of about one month in the summer of 2012. This paper also discusses the plausibility of fitting simulation results to a number of observational data sets obtained by in situ and remote measurements. The distribution of magnetic field in the vicinity of the heliopause is discussed in the context of Voyager measurements. It is argued that a classical heliospheric current sheet formed due to the Sun’s rotation is not observed by in situ measurements and should not be expected to exist in numerical simulations extending to the boundary of the heliosphere. Furthermore, we discuss the transport of energetic particles in the inner and outer heliosheath, concentrating on the anisotropic spatial diffusion diffusion tensor and the pitch-angle dependence of perpendicular diffusion and demonstrate that the latter can explain the observed pitch-angle anisotropies of both the anomalous and galactic cosmic rays in the outer heliosheath.  相似文献   

7.
In the first part of the paper some of the most important concepts used in terrestrial and satellite geodesy are defined and discussed.
  1. (A)
    The three reference surfaces: the topographic surface, the geoid and the reference ellipsoïd. The later is to be considered more as a convenient mathematical tool rather than a representation of the form of the earth.  相似文献   

8.
From the discovery that Venus has an atmosphere during the 1761 transit by M. Lomonosov to the current exploration of the planet by the Akatsuki orbiter, we continue to learn about the planet’s extreme climate and weather. This chapter attempts to provide a comprehensive but by no means exhaustive review of the results of the atmospheric thermal structure and radiative balance since the earlier works published in Venus and Venus II books from recent spacecraft and Earth based investigations and summarizes the gaps in our current knowledge. There have been no in-situ measurements of the deep Venus atmosphere since the flights of the two VeGa balloons and landers in 1985 (Sagdeev et al., Science 231:1411–1414, 1986). Thus, most of the new information about the atmospheric thermal structure has come from different remote sensing (Earth based and spacecraft) techniques using occultations (solar infrared, stellar ultraviolet and orbiter radio occultations), spectroscopy and microwave, short wave and thermal infrared emissions. The results are restricted to altitudes higher than about 40 km, except for one investigation of the near surface static stability inferred by Meadows and Crisp (J. Geophys. Res. 101:4595–4622, 1996) from 1 \(\upmu\)m observations from Earth. Little information about the lower atmospheric structure is possible below about 40 km altitude from radio occultations due to large bending angles. The gaps in our knowledge include spectral albedo variations over time, vertical variation of the bulk composition of the atmosphere (mean molecular weight), the identity, properties and abundances of absorbers of incident solar radiation in the clouds. The causes of opacity variations in the nightside cloud cover and vertical gradients in the deep atmosphere bulk composition and its impact on static stability are also in need of critical studies. The knowledge gaps and questions about Venus and its atmosphere provide the incentive for obtaining the necessary measurements to understand the planet, which can provide some clues to learn about terrestrial exoplanets.  相似文献   

9.
Despite the tremendous progress that has been made since the publication of the Venus II book in 1997, many fundamental questions remain concerning Venus’ history, evolution and current geologic and atmospheric processes. The international science community has taken several approaches to prioritizing these questions, either through formal processes like the Planetary Decadal Survey in the United States and the Cosmic Vision in Europe, or informally through science definition teams utilized by Japan, Russia, and India. These questions are left to future investigators to address through a broad range of research approaches that include Earth-based observations, laboratory and modeling studies that are based on existing data, and new space flight missions. Many of the highest priority questions for Venus can be answered with new measurements acquired by orbiting or in situ missions that use current technologies, and several plausible implementation concepts have been studied and proposed for flight. However, observations needed to address some science questions pose substantial technological challenges, for example, long term survival on the surface of Venus and missions that require surface or controlled aerial mobility. Missions enabled by investments in these technologies will open the door to completely new ways of exploring Venus to provide unique insights into Venus’s past and the processes at work today.  相似文献   

10.
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.  相似文献   

11.
The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP3) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP3. A pile driving model has been developed considering all masses of the hammering mechanism of HP3. By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight/HP3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.  相似文献   

12.
The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120° apart around the Juno spacecraft to measure complete electron distributions from ~0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ~5 eV to ~50 keV over an instantaneous field of view of 270°×90° in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with mm~2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.  相似文献   

13.
Clouds and Hazes of Venus   总被引:1,自引:0,他引:1  
More than three decades have passed since the publication of the last review of the Venus clouds and hazes. The paper published in 1983 in the Venus book summarized the discoveries and findings of the US Pioneer Venus and a series of Soviet Venera spacecraft (Esposito et al. in Venus, p. 484, 1983). Due to the emphasis on in-situ investigations from descent probes, those missions established the basic features of the Venus cloud system, its vertical structure, composition and microphysical properties. Since then, significant progress in understanding of the Venus clouds has been achieved due to exploitation of new observation techniques onboard Galileo and Messenger flyby spacecraft and Venus Express and Akatsuki orbiters. They included detailed investigation of the mesospheric hazes in solar and stellar occultation geometry applied in the broad spectral range from UV to thermal IR. Imaging spectroscopy in the near-IR transparency “windows” on the night side opened a new and very effective way of sounding the deep atmosphere. This technique together with near-simultaneous UV imaging enabled comprehensive study of the cloud morphology from the cloud top to its deep layers. Venus Express operated from April 2006 until December 2014 and provided a continuous data set characterizing Venus clouds and hazes over a time span of almost 14 Venus years thus enabling a detailed study of temporal and spatial variability. The polar orbit of Venus Express allowed complete latitudinal coverage. These studies are being complemented by JAXA Akatsuki orbiter that began observations in May 2016. This paper reviews the current status of our knowledge of the Venus cloud system focusing mainly on the results acquired after the Venera, Pioneer Venus and Vega missions.  相似文献   

14.
The Global-Scale Observations of the Limb and Disk (GOLD) Mission   总被引:2,自引:0,他引:2  
The Earth’s thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth’s atmosphere. Previous missions have successfully determined how the “climate” of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the “weather” of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth’s atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth’s emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.  相似文献   

15.
Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions.
  1. (1)
    The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above \(10^{18}~\mbox{erg}/\mbox{s}\) (\(10^{11}\) w).
     
  2. (2)
    The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy.
     
  3. (3)
    When the power reaches \(3\mbox{--}5\times 10^{18}~\mbox{erg}/\mbox{s}\) (\(3\mbox{--}5\times 10^{11}\) w) for about one hour and the stored magnetic energy reaches \(3\mbox{--}5\times10^{22}\) ergs (\(10^{15}\) J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density \({\approx}3\times 10^{-12}~\mbox{A}/\mbox{cm}^{2}\) and the total current \({\approx}10^{6}~\mbox{A}\) at 6 Re). As a result, the plasma sheet current is reduced.
     
  4. (4)
    The magnetosphere is thus deflated. The current reduction causes \(\partial B/\partial t > 0\) in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both Pedersen and Hall currents and thus generates the UL current system.
     
  5. (5)
    A significant part of the magnetic energy is accumulated in the main body of the magnetosphere (the inner plasma sheet) between 4 Re and 10 Re, because the power (Poynting flux \([ \boldsymbol{E} \times \boldsymbol{B} ])\) is mainly directed toward this region which can hold the substorm energy.
     
  6. (6)
    The substorm intensity depends on the location of the energy accumulation (between 4 Re and 10 Re), the closer the location to the earth, the more intense substorms becomes, because the capacity of holding the energy is higher at closer distances. The convective flow toward the earth brings both the ring current and the plasma sheet current closer when the dynamo power becomes higher.
     
This proposed sequence is not necessarily new. Individual processes involved have been considered by many, but the electric current approach can bring them together systematically and provide some new quantitative insights.
  相似文献   

16.
The results of the experimental study of heat transfer in one-and two-phase regions at a pressure p = (98–103)105 Pa in annular channels with twisting by means of a wire spiral and two-way heat supply are presented. We consider problems of determining the boiling point temperatures and heat transfer intensity at convection and boiling on convex and concave surfaces of an annular channel with twisting.  相似文献   

17.
The paper presents aerodynamic characteristics of thin cylindrical and conical shells in the incompressible flow. Experimental data and results of numerical simulation in the OpenFoam software are compared. It is shown that the aerodynamic characteristics of the thin shells differ from the aerodynamic characteristics of the corresponding solid bodies and depend on the shell geometry parameters.  相似文献   

18.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   

19.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

20.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号